From Corpus to Codings: Semi-Automating the Acquisition of

Linguistic Features

Michael O’Donnell
Department of Al, University of Edinburgh,
80 South Bridge, Edinburgh. EH1 1HN, UK.

email: micko@aisb.ed.ac.uk

February 5, 1996

Abstract

This paper describes a tool that facilitates the lin-
guistic coding of corpus material, through the effi-
cient prompting of the user for relevant categories.
Linguistic features are organised in terms of an in-
heritance network to reduce the amount of coding
effort. A corpus-exploration tool allows the user to
view only those codings matching particular crite-
ria. The tool also allows some forms of statistical
analysis, particularly comparisons between speci-
fied subsets of the corpus. Alternatively, codings
can be exported in a form readable by statistical
packages.

1 Introduction

To perform text studies, we often need to spend
significant amounts of time coding our texts —
splitting them up into segments of some size, and
assigning features (discourse, syntactic, etc.) to
each segment. We then have the problem of re-
representing the coded information in a format
which can be used for statistical analysis.

Ideally, some form of automatic coding of the
text will be performed, using a tagger, syntactic
parser, or semantic analyser. Unfortunately, the
scope of such tools is limited (both in terms of
syntactic coverage and semantic depth), particu-
larly when discoursal features are being coded.

The alternative to fully automatic coding is
semi-automated coding. Over the last few years,
I have been developing a software tool to semi-
automating some of the processes involved in cod-
ing text. The result of this work is called the
“WAG Coder”, which is one module of the Work-
bench for Analysis and generation (WAG) system
— a system for single-sentence analysis and gener-
ation (O‘Donnell 1994, 1995b). The program runs
on Macintosh computers.

The WAG Coder uses a menu-driven, window-
based interface to maximally simplify the coding

task. The user is prompted with a series of lin-
guistic alternatives (choices) from which the user
chooses one. Further choices are then presented.

The coder can be set up to code text units at
any linguistic level, for instance, graphological sta-
tus, discoursal features, or sociological variables.
However, the user does need to provide the cod-
ing scheme, which is a statement of the features to
be coded, also stating which of these features are
mutually exclusive. The systemic term for a set of
mutually exclusive features is a system.

It is useful to avoid coding choices which do not
apply to the present unit. For instance, if we are
coding an intransitive clause, it doesn’t make sense
to ask whether the clause is active or passive. By
using a systemic network (systems organised into
an inheritance network) to represent the relations
between features, we avoid this problem. Some
choice alternatives (systems) are made dependent
on prior features being chosen. Choice sets are
thus ordered in dependency.

The WAG Coder was developed under the Elec-
tronic Discourse Analyser project (Matthiessen et
al. 1991), funded by Fujitsu (Japan). Faced with
the need for grammatical profiles of our target
texts, and lacking analysis tools, we developed the
coder to help us build the profile. The Coder was
further developed under an NSF-funded project
(National Science Foundation Grant TRI-9003087)
to study the register of Newspaper articles, as part
of a wider goal of making the output of a text gen-
eration system sensitive to register variation (see
Bateman & Paris 1989a, 1989b; Paris & Bateman
1990).

A number of other semi-automatic coding tools
are available. Bliss & Ogborn (1983) discuss one
coder, also using system networks. However, this
is a relatively dated program using a text inter-
face. Webster (199x) discusses another coder, also
for Macintoshes, which allows the user to assign
function structure to text. Alexis & 77 discuss
another system which [to complete].

negative-polarity

positive-polarity

elaborating

hypotactic-dependent AIIE extending

clause enhancing
\—- dependent-clause

L independent-clause

paratactic-dependent

nominal-dependent

r nonfinite-clause

modal-clause
L finite-clause —[
nonmodal-clause

~ material

- mental

I verbal
intensive
circumstantial

- relational possessive
identifying
atributive

L existential

Figure 1: A Partial Graph of a Coding Scheme

2 Pre-Preparation

2.1 The Corpus

To prepare the corpus, the user needs to pre-
segment the text, one item per line of a text file,
e.g., for a study which is studying the expression
of semantic events:

Creating a DASD dataset
This section describes the knowledge required
to create a DASD dataset.
A DASD dataset can be created
by specifying NEW in the DISP parameter
of a DD statement.
Alternatively, the DASD dataset can be created
etc.

2.2 The Coding Scheme

The user must represent the coding scheme (the
features in which the user is interested) in terms
of a system network. This network needs to be
entered into the computer in the format which 1s
used for entering grammars in the WAG system.
The input format is similar to that used in the
Penman Text Generation system (WAG does in
fact read Penman-format systems):

(defsystem
:name congruency
:entry-condition semantic-event
:features (clausal-event
nominalised-event

i [tem 1or700]
[F\IeVI lEd|tV| ISChemeVI [OtherVI [fem ror700]
Text: The United states girded for war, perhaps as early as this ‘
week,
Comment ‘
Choice History Event-Polarity Newspaper-Name
semantic-process @® Negative- @ Press-Times
O Positive-Polarity O Wsj
Article-Type O Outlook
® Fpn O La-Times
O Nsumm Primary-Event-Form
O Edit @® Clausal-Primary
Realis O Nominal-Primary
@ Realis Temporal-Placement
QO TIrrealis @® Explicit-Temporal-
Event-Type O No-Temporal-Placement
@® State
- QO Event
(Select) O Iteration-

Hatity

Figure 2: The Coder Window

adjectival-event))

The user provides a set of these systems, which
together define a system network. These are read
into the coder, which can then be used for semi-
automated coding of the text corpus using this
coding scheme.

The features in the coding scheme can be from
any linguistic level, for instance, intonational,
grammatical, semantic, speech-function, contex-
tual (e.g., the gender of the speaker, the source
of the text). These levels may be mixed freely
within the coding scheme.

The user can use the Systemic Grapher, another
module of the WAG system, to check that the
coding scheme has been defined as intended. Fig-
ure 77 shows a part of a graph of a typical coding
scheme.

3 Feature Coding

Once the text has been prepared, and the coding
scheme entered, the user selects “Code Text” from
a menu. A dialog window appears, with several
boxes (see figure ?7). The user then nominates
which text file should be loaded, containing the
instances to code. The interface will then present
the user with each coding instance in turn (each
line of text from the text file) and prompt the user
to choose features for each item.

3.1 Feature selection

At the left of the Coding window is a scrolling di-
alog, labelled “Choice History” which shows the
features you have selected so far for this item (ini-
tially showing just the start feature)

Rather than stepping through each system in
the coding network, the user can be presented with
a dialogue window displaying all systems which are
currently relevant (the condition on the system has
been satisfied). See figure ?7. One feature in each

system is marked as the default. The user can
change the default selection by clicking on one of
the non-default option. When the appropriate fea-
tures are selected in each system, the user presses
the “Select” button, and the choices are recorded.
This approach allows a large number of features
to be coded with minimum effort, especially where
most instances conform to the default coding.

The second of these is labelled “Select Feature”.
This displays the first system in the network. If
you double click on one of these choices, the fea-
ture is selected and moved to the other list the
“Choice History” box. The Coder will then find
the next system to the left in the system network,
and present them with the choices.

In this manner, the system network is automat-
ically traversed, the Coder prompting the user at
each point. All of this proceeds in a quick and easy
manner, allowing substantial amounts of instances
to be coded quite quickly.

When no further choices remain,
presses the “Store” button, which saves this cod-
ing away to a designated file. Codings can be re-
accessed later for re-editing if desired.

the user

3.2 Changing Your Mind: Deleting
Features

To delete features from the “Choice History”, just
double-click on the relevant feature. The feature,
and all the features which depend on the choice,
will be removed from the Choice History.

4 Post-Editing of Codings

Various tools exist to view and edit codings once
they have been made.

4.1 Editing Codings

The interface allows the user to call up any stored
codings, and change the feature codings, com-
ments, or text-string. From the Coder interface,
you press the “View/Edit” button, and a list of
all codings appears (see figure ??7). Double-click
on any coding, and an editor will appear. This
interface also allows you to delete codings.

4.2 Filtering Codings

The “View/Edit” interface also allows you to view
codings which fit a particular feature specification.
Type in a feature specification (either a feature, or
a logical combination of features), and only those
codings which match the feature-specification will
be displayed. For instance, using my coding net-
work, I can type in any of the following feature
specifications:

e material: Shows all material clauses in the
corpus.

¢ (and material abstract): Shows all mate-
rial clauses in the Abstract stage of the text.

¢ (not material): Shows all clauses which are
not coded as material.

Feature-specifications can be arbitrarily com-
plex, e.g. (or (not active) past). Once the fea-
ture specification 1s typed in, press the ” Apply”
button, and the restricted set of codings will be
shown. If you leave the feature-specification field
blank when you press the “Apply” button, then
you will be presented with a list of all features.
Choose one to use as the filter.

4.3 Updating Codings

If you need to change the coding scheme at any
point, either changing the inheritance of cate-
gories, adding features, or adding whole systems,
then the Coder allows you to update past codings
without re-coding the information you already
have. In the “Update Codings” mode, the coder
loads up a file of saved codings, and checks the
stored features against the present coding scheme.
The coder will then prompt only for systems which
it has no recorded feature.

5 Corpus Exploration

Once coded, the codings represents a tagged cor-
pus — each text item is tagged with a set of fea-
tures. We may then wish to explore this corpus,
selecting out instances which conform to some fea-
ture specification.

The Systemic Coder includes a tool which fa-
cilitates the browsing through the corpus. This is
the Review Window introduced above.

Part of this interface, not so far discussed, is
its filtering capability — it lets you view only those
codings which fit a particular feature specification.
Type in a feature specification (either a feature,
or a logical combination of features), into the filter
box at the bottom of the screen and press the ” Ap-
ply” button, and the display will change to dis-
play only those codings which match the feature-
specification.

For instance, using my coding network, I can
type in any of the following feature specifications:

e material: Shows all material clauses in the
corpus.

e (and material abstract): Shows all material
clauses in the Abstract stage of the text.

e (not material): Shows all clauses which are
not coded as material.

File w| [Edit] [statistics #| Instances: 700
The United states girded for war, perhaps as early as this 1

C as hopes for a peaceful settlement of the Persian Gulf crisis faded rapidly on

C The mood in the capital darkened

C as the hours ticked by

C the gathering gloom

C first by the news that several last-ditch peace initiatives had

C and then by word that Mohammed Mashat, the Iragi ambassador to Washington, had...

C Only a miracle, [], could now prevent

C [a senior administrative official

C The aircraft carrier Theodore Roosevelt steamed through the Suez canal on Monday ...

C ready to assume her battle station in the Red

C The Roosevelt's arrival

C that 6 American Carriers, with 450 warplanes on board, will be operating in waters ...

C Bagdad will be living on borrowed

C the white-house said,

C once the united nations deadline for Iraqi withdrawal from Kuwait -- midnight T

TOTITEIT

(leave blank to select from list)

Figure 3: The Review/Edit Window

Feature-specifications can be arbitrarily com-
plex, e.g. (or (not active) past). Once the fea-
ture specification 1s typed in, press the ” Apply”
button, and the restricted set of codings will be
shown.

Editing, deleting and inserting will apply as be-
fore, even in the filtered mode.

Blank Filter: If you leave the feature-
specification field blank when you press the ” Ap-
ply” button, then you will be presented with a list
of all features. Choose one to use as the filter.

Wildcards: Wildcards can be used on any fea-
ture in the filter specification. You can thus type
as a shorthand:

e (and mat* abs*)

If any wildcarded feature is ambiguous, you will
be prompted with a list of the possible candidates.
Wildcards are useful as a shortcut, or in cases
where you cannot remember the proper spelling
of the feature.

Used in this way, the Review window allows us
to locate quickly only those text-items which are
of interest. If one needs examples for a linguistic
hypothesis, one can quickly obtain all examples
from the corpus.

5.1 Functions On Filtered Codings

The Review Interface Menus apply to the current
filter-set, rather than to the codings as a whole.
Thus, we can select out a sub-corpus, and perform
one of the following operations:

e Save selected codings to file: useful for creat-
ing a sub-corpus;

e List the text of selected codings: useful when
you want to explore a particular category.

I may for instance, set the filter to modal-
clause, and print the text of these so that I
can take them to a word-processor and play
around with them.

6 Statistical Analysis

The Coder allows some basic statistics to be per-
formed, mainly descriptive statistics (reporting
the means, etc., of each feature), and comparative
statistics (splitting the codings into two or more
sets, and reporting significant differences between
these sets).

For more detailed statistical analysis, the cod-
ings can be exported in a form which statistical
packages can import.

6.1 Descriptive Statistics

Thee Show Counts option will show the counts
and mean value for each feature. The counts apply
over the presently filtered corpus, allowing you to
get descriptive statistics of subsets of the corpus.
These results can be saved to file in tab-delimited
form.

6.2 Comparative Statistics

The Comparative Statistics button computes com-
parative statistics on the presently filtered cod-
ings. You will be prompted to choose a system,
and the codings are split into a number of sets,
one set for each feature in that system. If a cod-
ing has feature A, then it is added to set A.
These sets are then compared statistically. The
program derives the mean occurrence in each set
for each defined feature. These means are dis-
played in a window, along with the an indicator of

R =
edit nsumm fpn
(252) (106) (188) [
7o a1 Ta%
21% 19% 22%
(52) (20) (41)
73%- 65% 44%-
27%- 35% 56%-
(14 7 (23
0% 0% 0%
7% 1% o1
21% 29% 39%
(11 (5 (14
0% 0% 0%
o 0% 0%
9% 20% 21%
o ao% e
3 2 9
" o o
0% 0% 0%
o o 0%
33% 50% o
o so% 10056
(14) () (23
So0% so%
7% 0% 4% [
=
Filter: | All Codings Display Type
@ Percent O count
G OMean OTstat

Figure 4: The Comparative Statistics Display

how statistically different that mean 1s from that
in the other sets. See figure 77.
Figure 8:

6.2.1 Significance

The plus symbols after each mean indicate how
significantly different the mean is from the means
in other sets.

e + Significant at the 90
e ++ Significant at the 95
e ++4+ Significant at the 98

e (none) Not significantly different.

6.2.2 Local or Global Means

The program adds up the number of occurrences
of each feature in the set. The mean value can be
calculated in either of two ways:

1. Global Mean: the feature count is divided by
the total number of codings in the set. If
one root-level feature scored 20which inher-
its from this feature will add up to 20

2. Local Mean: the feature count is divided by
the total number of codings which select from
the feature’s system. Thus, the means of all
features in a system will always be 100

The user can choose between these two modes
using the Preferences... option in the Coder menu.

6.2.3 Display options

At the bottom of the Comparative Statistics win-
dow, there is a set of radio-buttons, set initially
to Percent. Click on one of the other options, and
the display will change, to show, rather than per-
centages, either the mean itself (between 0 and 1),
the raw counts, or the t-statistic.

6.2.4 Exporting Results

Pressing the Export button exports the table in a
form which can be read into word processing pack-
ages. The data 1s saved tab delimited. I open the
file in Microsoft Word, highlight the data (exclud-
ing the header data), and select ”Text to Table”
from the Insert menu. The data is made into a
table such as that in table 1.

Editorial Nsumm FPN N 189 80
132 simple-past 21simple-present 42simple-future
11simple-modal 15past-perfect 1present-perfect
11future-perfect - - - modal-perfect - - 1Table 1:
Distribution of Tense Selections over Article Types

Tense

6.3 Statistical Reports

It often happens that we think we have finished
our statistical analysis phase, and we move on to
the interpretation of these results. However, often,
we may find that our analysis suggests that we
need more data of a particular type, that we lack
enough instances of one feature to get significant
So we have to add more data, and do
all our analyses again. This also happens as we

results.

discover mistakes in our codings, and change some
of our feature assignments.

Sick of re-doing all my analyses, I added an-
other functionality to the coder. You can define
the set of comparative statistics tests you are in-
terested in (splitting on this system, looking at the
differences for these features, etc.). Whenever the
data changes, you just load in this file of defined
tests, and all the results for the current data-set
are printed out to the files you specify. This allows
your results to be quickly updated as your codings
change.

Reports have the following form:

(def-report
:split-system newspaper-name
:report-systems (article-type)
:display-stat :percent
:local-counting-p t
;filter finite—clause

:save-file "Workbench;TP-Results:1ArtNewFin.1j

Evaluating this will present a comparison over
the different newspapers included in the corpus
(there were four). Tt will compare these papers
only in respect to their coding of article type
(front-page-news, news- summary or editorial).
Basically, this report should tell us how balanced
our corpus is in respect to having an equal amount
of each article type for each paper.

The format of a def-report is as follows:

e :split-system system - The system which is
used to split the corpus.

:split-features (feature! feature? feature3 ...)
- This form is used instead of :split-system, it
is used if you want to compare across only a
subset of the features in a system, or if you
wanted to compare across features which are
not even in the same system.

o :report-systems (system! system?2 ...) - The
systems which are to be included in the re-
port.

e :display-stat stat-type - What statistic you
want displayed. Use either :percent :mean
:count or :tstat.

e :local-counting-p logical-value - t if you want
local counts (see above), nil otherwise.

o filter filter - a logical complex of features.
The codings are filtered on this expression be-
fore comparison.

o :save-file filename - The file to save the results
to. If this field is missing, the results will only
be displayed in a window.

6.4 Exporting Codings for External
Statistical Analysis

The Coder can export the codings in a form read-
able by a statistical processor. At present, tab-
delimited format is supported. The user can also
select which of the features are to be exported,
rather than exporting all the data. In our NSF-
funded register study, the exported codings are im-
ported into the Microsoft Excel package, or into a
statistical package called Statview.

7 Case Study:
Tense in English

Choosing

To place the use of the Systemic Coder in perspec-
tive, I will outline its use in one study, an NSF-
funded study into variation of content expression
over different text- types (Bateman & Paris 19xx).

7.1 The Phenomena

My role in this study was to examine the varia-
tion in the linguistic resources used to temporally
place events in different text-types. By temporal-
placement, I mean the strategies whereby the
writer communicates to the reader the temporal
positioning of the event being expressed. Re-
sources for temporal placement include conjunc-
tive relations, e.g., The troops invaded after the
bombing. Tense is another major resource for tem-
poral placement, e.g., simple-past tense tends to
indicate that the reported event occurred before

r past-perfect

- present-perfect
perfect-

clause - future-perfect

— modal-perfect

TYPE .
r simple-past

I simple-present
non-perfect- —SIMPLE-TENSE |

clause - simple-future

- simple-modal

Figure 5: The Tense Systems

press-times

WSj

outlook

NEWSPAPER-NAME L

la-times
Text-Type
fpn

nsumm

edit

Figure 6: Process Types Informing Tense Selection

the time of writing. In this case-study, I focus
on the study of tense as a means of temporal-
placement.

7.1.1 Tenses of English

English provides six basic tenses, simple-
past, simple-present, simple-future, past- perfect,
present-perfect and future-perfect. However, we
also need to take into account the possibility of
modality — We can bomb Bagdad. Figure 77
shows how the tense systems were organised for
this study. The percentage occurrence of each
tense in our corpus is also shown. Progressive as-

pect was ignored.

7.1.2 Text Types

In regards to text-type, three text-types were com-
pared:

o Front-Page-News;
e Editorials;

e News Summary.

completed-process

realis__R.EALLS-_T_‘LEE[

-R-EAJ-LS[ongoing-process
irrealis

Process-Type

state

mental-state
qtate—“-A’-E-“i{ relational-
w{ event erial-
iteration-

usuality

Figure 7: Process Types Informing Tense Selection

7.1.3 Semantic Types Informing Tense Se-
lection

Before beginning discussion of the registerial dis-
tribution of the various tense types, we will at-
tempt here to define the semantics of tense — what
semantic meaning does each tense choice encode.
This discussion will assume two semantic distinc-
tions, shown in figure 77:

e Process Type: Semantic processes can be
distinguished between events: ”a happening
with fixed beginning and end” (Moens &
Steedman 1988, p17), states: ”an indefinitely
extended state of affairs” (ib. id.), and itera-
tions: a repetition of a single process. States
may be mental-states (e.g., They hope the
war ends soon), relational-states (e.g., Today
is the last day of the United nations grace pe-
riod), and material-states (e.g., Missiles are
trained on Bagdad). Tterations may represent
a re-occurrence of a process — they bombed 5
times — or a statement of usuality — they usu-
ally bomb on Fridays.

e Realis: Processes can also be distinguished
on the realis-irrealis axis. Realis concerns
whether or not the process has taken place,
or is still occurring, or has not in fact oc-
curred. A realis process is one which has ei-
ther actually occurred, or is still in the process
of occurring. The two subtypes of realis are
completed-process and ongoing-process. All
other processes are labeled irrealis. An irre-
alis process is one which has not happened,
and is not happening now. This includes ex-
pectations of the future (e.g., he will run),
statements of obligation (he should run), de-
nials (e.g., he did not run), etc. !

I'Note that there is not a clear relation between ongoing-
processes and progressive aspect — an ongoing-process is
ongoing at the time of speaking, while an event reported
in progressive aspect is ongoing at some reference point,
which may be the point of speaking, but is often not. For
instance, He was running yesterday reports a completed-
process (assuming the running finished), but it is reported
in progressive aspect.

7.2 Preparing the Corpus

A number of newspaper texts from a range of
text-types were entered into the computer. This
corpus was then segmented into processes, where
a process might be a clause (e.g., They bombed
Bagdad), or a nominal-group (e.g., The bombing
of Bagdad). After segmentation, the corpus con-
sisted of 700 items.

To support this study, a corpus of 700 processes
was coded, exploring various strategies of tempo-
ral placement. Of these processes, only 400 are
relevant here, the other 300 being either nonfi-
nite clauses or nominalisations, neither of which
select for tense. Coding was performed using a
program especially developed for coding using Sys-
temic grammar (see O’Donnell 1995).

7.3 Preparing the Coding Scheme

The next step involved the entering of the cod-
ing scheme — the system network organising the
coding features. Unexpectedly, this phase took up
at least as much time as the coding of the corpus
itself. Substantial literature surveys were needed
into temporal conjunctive relations, temporal as-
pect and tense. A draft coding scheme was de-
veloped. The corpus was scanned visually to see
if most data fitted to the draft coding, and when
exceptions arose, the coding scheme was modified.

7.4 Statistical Analysis

The next step involves statistical analysis. For
this study, we performed a series of comparative
analyses, as discussed above, using the Coder’s
built-in statitistical functions. These results were
exported in a tab-delimited format, and then
opened within a word-processing package (Mi-
crosoft Word). Here, they were automatically re-
formatted as tables, for inclusions in the NSF re-
port. The results for one particular substudy, for
choosing tense in English, are repeated below.

7.5 The Results: Variation of Tense
Selection over Article Type

After having presented the various tenses of En-
glish, we will now explore their registerial distribu-
tion. To simplify discussion, we will focus on one
registerial variable — that of article type. Stylistic
variation over newspapers will also be examined
in a later section.

Since only finite clauses are tensed, the stud-
ies below used a sub-corpus, consisting of the 401
finite-clauses in the corpus as a whole.

7.5.1 A Traditional Approach

Traditional studies of English Tense look at the
distribution of tense choices over register varia-
tion. For instance, Plum & Cowling (1987) studied
the correlation of social class, gender, and age with
tense selection. They found that, for instance,
use of past-tense (primary tense) increases with
both age and rising social class. Halliday & James
(1993) also looks at the variation of tense selection
over differing registers.

We could take this approach with our corpus.
For instance, table 3.1 presents the distribution
of tense selections in various article-types. This
table has one row for each of the eight tenses being
considered. Each column shows the percentage of
clauses which occur in articles of that type which
use the named tense. For instance, 21

The significant result shown in the table is that
editorials use far less simple-past than the other
article types (21(426
Editorial Nsumm FPN N 189 80
132 simple-past 21simple-present 42simple-future
11simple-modal 15past-perfect 1present-perfect
11future-perfect - - - modal-perfect - - 1Table 3.1:
Distribution of Tense Selections over Article Types

These results do not however explain much by
themselves. It 1s up to the analyst to posit some
explanation of these results, such that front-page-
news tends to express events which have happened
already, so simple-past is common, while editorials
tend to express the consequences and background
of these events, e.g., relational processes such as
The United States has friends and interests in the
Gulf; The correct policy today is to shift more
of the costs of collective security onto our more
prosperous allies

However, this is the analyst intruding on the
data — the data does not tell us this — all we know
directly 1s the probabilities of particular grammat-
ical choices. The analysis itself has not explained
the data, just given the analyst a clearer idea of
the patterns which need to be explained.

Tense

7.5.2 Separating Content Selection & Ex-
pression

One of the main problems with register studies
which look at only grammatical choices is that
they do not properly separate the differences due
to content selection and differences due to content
expression. When we start to examine the rea-
sons that the article-types above differ in tense-
selection, we start to notice that it is not really
a difference 1n grammatical patterning, but a dif-
ference in the types of content that the articles
express — the articles differ in typical content, and
the difference in tense selection is a result of this,
not of a direct register preference for particular

tense choices.

For instance, the above data showed that
simple-present is the most common tense in Ed-
itorials. This does not mean however, that what-
ever type of event we have to express, we should
use simple-present. If we are expressing an event
which has already occurred, simple-present 1is
highly unlikely. Simple-past is far more likely.

From this it should be clear that the consider-
ation of tense-selection needs to take into the ac-
count not only the register, but also details about
the process that is being expressed. For example,
whether or not the process has already occurred,
what we have earlier referred to as the realis of the
process.

What traditional register analyses ignore is that
register constrains not only the expression of
events within a text, but also the very selection
of which events are to be reported in the text —
the problem of register needs to be seen under two
topics:

1. Content Selection: Which processes and rela-
tions are to be reported in the text?

2. Content Expression: How is a given process
or relation to be expressed grammatically?

To properly explain the variation in tense across
the text-types, we need to separate out these is-
sues. Fach will be explored separately below.

7.5.3 Register & Content Selection

Describing register-variation in terms of context-
sensitive content selection is quite common in com-
putational linguistics (e.g., Hovy 1988, Paris 1993,
etc.). Most of these approaches have assumed a set
of knowledge to express (the knowledge base), and
attempted to describe how to decide which of the
knowledge should be expressed in the text.

We will not, at this point, offer a mechanism
for content-selection. Rather, we are trying to de-
scribe the register- based preferences for content-
selection — what types of content are preferred by
each register. It may prove that this information
1s useful to a content-selection process, but it may
not.

Table 3.2 shows how the various text-types vary
in their content-selection, as expressed in terms of
realis vs. irrealis. These results demonstrate that
editorials express far fewer completed-processes
(29(40very clear register skewing of content selec-
tion.

Feature Editorial News- Summary Front-Page-
News Counts: 189 80 32 Realis 60Completed-
process 290ngoing-process 311Irrealis 40Table 3.2:
Realis Variation across Article Type

Context L.
Editorial

TEXT-
TYpE | Front-Page-News

News-Summary

Semantics
completed-process 29 %
realis —[

ongoing-process 31%

irrealis 40%

Figure 8: Contextualising Content Selection: Ed-
itorials

I have not explored the sub-types of irrealis,
since the number of instances in each category is
too low to allow reliable results.

Figure 7?7 shows diagrammatically the results
for editorials. This diagram emphasises the rela-
tionship between the two axes of table 3.2. We
have here a case of register (in this case, article-
type) conditioning semantic choice — the frequency
of realis types within the text-type.

In summary, the first component of the ex-
panded approach to register analysis looks at reg-
ister distribution of semantic types. The next sec-
tion will explore the second component — register
variation in the expression of semantic types.

7.5.4 Register & Content Expression

The other half of the problem we need to explore
is how the content of the text is realised gram-
matically, and the role of register in this mapping.
For this, we use Semantic Event Analysis, the ap-
proach to register analysis introduced by Bateman
& Paris (1991). As discussed in chapter 1, this
approach explores register variation in terms of
the variation in mapping between semantics and
lexico-grammar. In other words, given that we
have a chunk of meaning to express, how does reg-
ister influence its expression.

Although this approach to register analysis is
relatively unexplored, there is one phenomenon
which has been explored in this way: i1deational
grammatical metaphor. Several studies have ex-
plored how semantic processes are expresses gram-
matically — as clauses, nominal-groups, or adjec-
tivally. Halliday (1985b) for instance, shows that
written registers use more grammatical metaphor,
and Halliday (1988) shows that scientific discourse
also uses more. Eggins et al. (1994) explores the
use of ideational grammatical metaphor in History
textbooks.

However, none of the previous studies of tense
have taken this approach. We will now explore

tense selection from such a perspective.

Table 3.3 below shows the mapping between re-
alis and tense, for the corpus as a whole. It shows
that realis and tense are strongly interrelated, with
four tense strategies realising completed-processes,
and two for ongoing-processes.

Tense Complete -Process Ongoing- Process Ir-
realis N 175 92 134 simple-past 84simple-present -
96simple-future - - 21simple-modal 1past-perfect
2present-perfect 13future-perfect - - - modal-
perfect - - 1Table 3.3: Usage of Tense across Realis
Types

In the rest of this study, we will ignore irrealis,
since there are several sub-types, all of which pat-
tern differently, and we have insufficient data to
produce significant results. Also, since there are
no occurrences of future-perfect or modal-perfect
in the realis data, we will leave these results out.

One fact we can draw from this data is that the
realis of a process partially constrains the choice
of tense. However, the constraint is not total:

e Completed-Processes: four alternatives are

still available:

— Simple-Past;

Present-Perfect;
— Simple-Modal;
Past-Perfect

e Ongoing-Processes: two alternatives are still
available:

— Simple-Present;

— Present-Perfect;

In the rest of this section, we will be exploring
the effect of register on these mappings, in regard
to one register variable — article-type.

7.5.5 Article-Type & the Expression of
Completed-Processes

Table 3.4 shows the variation in tense selection
used to express completed-processes across differ-
ent article- types.

Tense Editorial News- Summary Front- Page-
News N N=54 N=46 N=81 simple-past 67simple-
present - - - simple-future - - - simple-modal 4past-
perfect 4present-perfect 26Table 3.5: Variation in
Expression of Completed-Processes across Article
Types

As stated above, four tenses can realise a
completed-process. The effects of article-type on
this mapping are:

e Simple-Past & Present-Perfect: The ma-
jor strategies for expressing completed- pro-
cesses are simple-past and present-perfect,

and apart from the simple-modal case, edi-
torials differ in their expression of completed-
processes in two ways:

1. Editorials use significantly more present-
perfect (26

2. Editorials use significantly less simple-
past to express completed-processes (67

As discussed in section 2 above, the present-
perfect tense is used when the writer wants to
state that the consequences of some past con-
dition are still in force in the present. Since it
1s part of the role of editorials to relate past
events to the reader’s present, we would ex-
pect a higher incidence of this tense, and this
is in fact the case.

e Simple-Modal: The Editorial data contains
the only two instances of completed- processes
being realised as simple-modals, which was
discussed in section 2.2 above. This difference
is statistically significant. This is not unex-
pected, since this is a highly complex tense
choice, used to express a past expectation
about future events. This type of strategy
1s more likely in the realm of editorial, which
attempt to draw messages from the past, to
apply to the present, to influence the future.

e Past-Perfect: Both editorials and front-page-
news show a low incidence of past- perfect
to express completed-events (3-4this tense op-
tion. These results were not statistically sig-
nificant.

Figure 77 shows diagrammatically the effect
of text-type on the expression of completed-
processes. Like figure 77, this diagram at-
tempts to show the contextualisation of gram-
matical choice — that tense choice is depen-
dent on both current text-type, and also on
the content being expressed.

7.5.6 Summary

In this section, we have argued against analysing
registerial distribution of grammatical choices in
isolation of the semantics they realise. Without
taking the semantic context into account, we may
reach conclusions about grammatical preferences
which are not true grammatical preferences; but
rather a reflection of skewed content selection.

To this end, we have explored tense selection in
the context of the realis that the tense is realising.
We can thus explain the effect of register on tense
in two categories:

1. How does the distribution of realis in a text
vary with register.

10

Context
Editorial

T Front-Page-News

News-Summary

Semantics

I— realis
REALL

irrealis.

completed-process
ongoing-process

1

[simple-past (67%)

Grammar

. [~ simple-present
simple-tense—|
[~ simple-future

~ simple-modal (4%)
r past-perfect (4%)
[~ present-perfect (26%)

perfect-tense ™}
[~ future-perfect

— modal-perfect

AN J

Figure 9: Contextualising Grammatical Selection:
Text-Type and Semantics

2. How does the expression of realis in tense vary
with register.

The methodology applied here to tense can be
extended to explore other areas of grammatical
selection, as has already been done in regards to
ideational grammatical metaphor.

8 Summary

The WAG Coder is a tool which facilitates the
coding of text for use in empirical studies. It semi-
automates the acquisition of features. The editing
and updating of codings without total re-coding
is supported. The coder allows codings to be ex-
ported in a form suitable for statistical programs.

9 Bibliography

Alexis, Melina 1996 [paper in this issue].

Bateman, John & Cecile Paris 1991 ” Constrain-
ing the deployment of lexicogrammatical resources
during text generation: towards a computational
instantiation of register theory” chapter 5 of Eija
Ventola (ed.), Functional and Systemic Linguis-
tics: Approaches and Uses, Mouton de Gruyter,
Berlin, New York, pp 81-106.

Bateman, John & Cecile Paris 1989b “User
Modelling and Register Analysis: A Convergence
of Concerns”, Technical Document, Information
Sciences Institute.

Bateman, John & Cecile Paris 1989c ”Phras-
ing a Text in Terms the User Can Understand”,
in Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-89)”,
Detroit, Michigan.

Bliss, J., M Monk & J. Ogborn 1983 Qualitative
Data Analysis for Educational Research, Croom
Helm.

Matthiessen C., O’Donnell M, and Zeng L. “Dis-
course Analysis and the Need for Functionally
Complex Grammars in Parsing” in Proceedings
of the Second Japan-Australia Joint Symposium
on Natural Language Processing, October 2-5
1991, Kyushu Institute of Technology, lizuka City,
Japan.

O’Donnell, Michael 1994 Sentence Analysis and
Generation - A Systemic Perspective. Ph.D., De-
partment of Linguistics, University of Sydney.

O’Donnell, Michael 1995a ”From Corpus to
Codings: Semi-Automating the Acquisition of
Linguistic Features”, in Proceedings of the AAAI
Spring Symposium on Empirical Methods in Dis-
course Interpretation and Generation, Stanford
University, California, March 27 - 29.

O’Donnell, Michael 1995b ”Sentence Genera-
tion Using the Systemic WorkBench”, in Proceed-
ings of the Fifth European Workshop on Natu-
ral Language Generation, 20-22 May, Leiden, The
Netherlands, pp 235-238.

Webster

Paris, Cecile & John Bateman 1990 “User mod-
eling and register theory: a congruence of con-
cerns”, Technical Report, USC/Information Sci-
ences Institute.

11

