
Chapter 8

Systemic Unification &
Feature Logic

1. Introduction
WAG is a system for the representation and processing of information at various

levels of representation. At each level, the same formalism is used: system networks and
realisation statements represent the structural potential at that level, while systemic
structures represent the instantial knowledge1. The WAG system thus deals with two
types of information at each level:

• potential information: the resources - system networks with associated realisation
statements and feature selection conditions2;

• instantial information: systemic structures (representations) -- structures of units
in relation; also textual fields.

In this thesis, I have reported on representations of lexico-grammatical structures, and
semantic structures (ideational, interactional and textual).3 In work so far unpublished, I
have represented context, exchange-structure, and generic structure within the WAG
formalism, showing that the formalism can be applied to a wide range of phenomena.

The sub-system within WAG which deals with the representation of potential and
instantial information is called the WAG Knowledge Representation System (WAG-
KRS). It is a generalised knowledge representation system, filling the same role as
systems such as Loom (MacGregor & Bates 1987), PATR (Shieber 1984), FUF
(Elhadad 1991), and TFS (Emele & Zajac 1990). WAG-KRS is based strongly on the
Loom system, although oriented more towards the Systemic formalism.

The WAG-KRS includes a set of basic processes, for operations on system networks
and systemic structures. These can be used to process representation on any linguistic
level, since a common formalism is used throughout. These processes include:

• Resource-Management Processes: handling the reading in of resources
from data files; the storing away of this information in storage tables; and
providing functions to access the resources in various ways;

• Feature-Based Processes: processing of features and combinations of
features, e.g., finding the path of a feature, the unification of feature-paths, etc.

1Where linguistic information is not naturally represented in terms of Systemic structures, the formalism
has been extended to allow alternative representations. This is the case, for instance, with textual fields (see
chapter 5), which allow the modelling of information as membership in a set, rather than through structural
representation. The WAG constraint language has been extended to allow testing or assertion of membership in
the various textual fields, e.g., to test whether a particular entity is in the relevance textual field.

2The lexicon is also part of the Systemic potential, but is not connected with any one stratum.
3Graphological structures are at present represented procedurally, as processes for graphological

construction and analysis.
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• Structure-based Processes: processing of Systemic-structures, e.g.,
assertion of structural information; unification of structures; negation of structural
constraints, etc.

This chapter describes the representation and processing of linguistic information
within WAG-KRS.

2. Representation and Processing of Systemic Features

2.1 Computational Representations of Paths
One of the recurrent tasks in Systemic processing is to find the logical consequences

of a set of features.4 For instance, if we specify that a unit has the feature finite, then the
logic of WAG’s system network implies that it must also have the features: grammatical-
unit, clause, clause-simplex, and full. This set of features is derived through a process of
backward chaining -- working backwards from a feature (or set of features) towards the
root of the system network, and collecting the features that are met along the way. The set
of features which is collected is called the path of the feature (the 'path' between the root
and the feature).

In the simple case, a path can be represented as a conjunction of features, e.g.,

(:and unit grammatical-unit clause clause-simplex full finite)

In some cases, there are several paths between a feature and the root -- system entry-
conditions can be disjunctive, allowing two or more paths back to the root. For instance,
in the WAG grammar, the feature subject-inserted is a member of a system whose entry-
condition is a disjunction between the features finite-clause and nonfinite-with-subject
(e.g., I asked the man to go). The feature thus has two paths:

    a) (:and unit grammatical-unit clause clause-simplex full
             finite-clause subject-inserted)

    b) (:and unit grammatical-unit clause clause-simplex full
             nonfinite nonfinite-with-subject subject-inserted)

One means of representing disjunctive paths is called Disjoint Normal Form (DNF) --
a logical form allowing disjunctions only at the highest level of the form. A DNF
expression is thus a disjunction of conjunctive forms. The disjunctive path above would
thus be represented as follows:

(:or (:and unit grammatical-unit clause clause-simplex full
           finite subject-inserted)

     (:and unit grammatical-unit clause clause-simplex full
           nonfinite nonfinite-with-subject subject-inserted))

As the number of disjunctive entry conditions in a path grows, the number of
alternatives in the DNF path also increases, at an exponential rate, a combinatorial
explosion. DNF representation is thus costly in time (the expansion into DNF can require
a lot of time) and space (the size of the resulting form can be very large).

Kasper (1987a, 1987b) developed an alternative means of representing feature-paths
which requires less space to represent, and allows quicker processing. I call this Kasper
Normal Form (KNF). This form:

4It could be claimed that the calculation of feature paths (backward chaining) is not necessary for
generation, since Penman, for instance, does not use backward chaining. However, because of this, Penman
does not handle preselection properly. Also, Penman’s generation does depend on backward-chaining in the
semantics, to find a concept's super-concepts, but this is handled by Loom.
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“is based on an a normal form that divides each description into definite and indefinite
components. The definite component contains no disjunction, and the indefinite
component contains a list of disjunctions that must be satisfied.” (Kasper 1989, p2).

The KNF form splits the complex path into two parts:
1) The features common to all paths (definite component);
2) For each path, the features unique to that path (indefinite component).

The disjunctive path introduced above is divided as follows:

Definite: (:and unit grammatical-unit clause clause-simplex full subject-inserted)
Indefinite: (:or  finite
                       (:and nonfinite nonfinite-with-subject))

These can be put together as a single KNF logical form:

    (:and (:and unit grammatical-unit clause clause-simplex

                full subject-inserted)

          (:or finite

               (:and nonfinite nonfinite-with-subject)))

The WAG system uses KNF representation for feature paths, because it allows faster
unification than DNF. For fuller descriptions of KNF, see Kasper (1987a, 1987b).

2.2 Deriving Paths (Backward Chaining)
The calculation of the path of a feature is a recursive process:

a) Find the path of the entry condition of the feature’s system,

b) Add the feature to the definite features of the path.

The entry condition will be either a single feature or a complex of features. If it is a
single feature, its path is calculated as above. The entry condition may, however, be
complex, e.g.,

(:and finite (:not modal) (:or active intransitive))

If the entry condition is logically complex, it is calculated as follows:

• Conjunction: Derive the paths of each element of the conjunction, and unify
these together (see next section).

• Disjunction: Derive the paths of each element of the disjunction, and disjoin
them (see Kasper 1987a, 1987b).

• Negation: The feature or feature-complex contained in the negation is negated
(see section 2.4).

2.3 Path Unification
Two paths can be unified to produce a single path. Path unification is used for many

purposes, for instance, to check that two feature-specifications are mutually consistent.
The unification of two DNF forms requires the disjunctions in each form to be expanded
out, often a costly process. KNF unification first unifies the definite components, and
only proceeds to unify the indefinite components if the definite information is compatible.
If the definite information is not compatible, then the expansion of the disjunctions is
avoided.

Another factor which makes KNF unification efficient is that the expansion of the
indefinite components can be delayed. When two KNF forms are unified, the
disjunctions in each form are not multiplied out, but kept as a set of simultaneous
disjunctions e.g.,
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(:and Def1 (:or A B) (:or C D))  U  (:and Def2 (:or E F G))

=> (:and (Def1 U Def2) (:or A B) (:or C D) (:or E F G))

The unification is accepted or rejected just on the basis of the unification of the definite
components only -- the indefinite components are not checked. At various opportunistic
points, the KNF form can be fully expanded, to check whether it is in fact valid or not.
However, the form often becomes invalid (on the basis of the definite component) before
expansion can occur, thus avoiding the need for expansion completely.

The WAG feature unification algorithm follows Kasper (1987b). See that paper for a
full description. A simplified version of the WAG algorithm follows:

1) Check the compatibility of the definite component of each form. If incompatible,
fail.

2) Set the definite component of the result-form to be the union of the features in the
two definite components.

3) Set the Indefinite component of the result-form to the set of the disjunctions
(indefinite component ) from the two forms, unexpanded.

2.4 Feature Negation
Often it is necessary to assert the negation of a feature or feature-complex. For

instance, we might specify that a particular role is not filled by a unit of a particular type,
e.g., (:type Subject (:not plural-group)). Negation is also often used in parsing -- if we
want to assert that a particular realisation statement is not used, we negate the feature to
which the realisation statement is attached.

Feature paths are not allowed to contain negation, so the negation-form is expanded
out, being replaced with a form with no negation. The negation of a feature in a system
network is easy to calculate. If we negate a feature, then we know that either the system
is not entered at all (the entry-condition is not valid), or one of the other features in the
system is selected. For instance, assume the system shown in figure 8.1. If we assert
(:not a), then either (:not z) is true, or one of b or c is true, e.g.,

(:not a) => (:or b c (:not z))

a

b

c

z

Figure 8.1: A Sample System
(:not z) can then be expanded in a similar way, until we reach a point where there is no

negation left in the expression. The process will eventually get back to the root of the
system network, and since the root feature of the network is by assumption true, the
negation of this term simplifies to nil.

Negation of Feature Complexes: In the example above, the entry condition was
a single feature. Often, entry conditions can be logically complex - consisting of
disjunctions and conjunctions of features. Negated feature complexes can be expanded as
follows:
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(:not (:and A B) ) => (:or (:not A) (:not B))

(:not (:or A B) ) => (:and (:not A) (:not B))

2.5 Caching and Pre-calculation of Feature-paths
Feature Logic is a time-consuming process, and any step to reduce the amount of

calculation is valuable. Higher efficiency can be achieved by avoiding repeated calculation
of the same information. In the WAG system, some types of information are cached
when first calculated, i.e., stored in a table. If the information is required again, it is
recovered from the table rather than being re-calculated. In regards to feature logic, two
types of information are cached:

• The Path of Each System: the path of each system is cached rather than the paths
of individual features, since the path of all features in a system are identical,
except for the feature itself. Since there are roughly half as many systems as
features, the storage requirement is halved.

• The Negation of Each System: the negation of each system (more precisely, the
negation of the entry condition of each system) is also cached as calculated. The
negation of a feature is computed by disjoining the negation of the entry-
condition with the other features in the system.

Caching still requires each calculation to be performed once during processing. For
some often-used information, it is worthwhile to pre-cache (precompile) all information
before processing begins. For instance, to speed up analysis, system-paths and system-
negations are precompiled before parsing.

3. Representation and Processing of Systemic Structures

Systemic structures, on whichever stratum, are represented in the same manner. This
section will describe the representation and processing of these structures. Systemic
structures are composed of a set of units, which are joined together by a set of relations.
These are the two primitives of systemic structure.

3.1 Relations
Relations join units together. The WAG system only recognises binary relations,

which join one unit to another. Relations are always directed -- one unit is the head of the
relation (the nucleus or domain), the other is the dependent (the satellite or range).5 These
relations are labeled in terms of the role played by the dependent unit: for instance, the
relation between a process and its Actor is called an Actor relation.

3.2 Units
The representation of Systemic structures is based around units, not relations. The

knowledge-base (the sum of all asserted structural representations) is stored as a unit-
table, a data-structure holding the definition of each unit. A typical unit definition (for a
speech-act) is shown below, and table 8.1 explains each of the fields:

5Non-directional relations are often used to represent the conjunction, or disjunction of units. In the WAG
system, these are not represented using relations as such. Conjunction could be represented by allowing
multiple occurrence of a relation, e.g., allowing two Actor roles to a process (although WAG does not yet allow
this). The handling of structural disjunction in WAG will be discussed below.
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Field Description

:unit-id A unique identifier for the unit -- used as the table key.

:features A selection-expression for the unit, perhaps including disjunction (stored in
Kasper-Normal Form).

:roles The set of relations for which the unit is the head, along with the unit-id of the
dependent of the relation (the filler).

:backpointe
rs

The set of relations for which the unit is the dependent, along with the unit-id of
the head of each relation.

:ordering A data-structure indicating which units are known to be ordered prior, equal or after
the unit (used, for instance, to order a unit relative to some number, or a point of
time).

:cant-unify A list of units with which this unit has been rerstricted from unifying with (see
structural negation below).

Table 8.1: The Fields of a Unit Definition

#S(unit

  :id utterance-5

  :features (:and (root unit move speech-act inter-act negotiatory

                   negotiate-information propose initiate))

  :roles ((Speaking-Time unit1338)

          (Reference-Time unit1339)

          (Theme caller)

          (Proposition p5)

          (Speaker caller)

          (Hearer operator) )

  :backpointers nil

  :ordering nil

  :cant-unify nil)

Systemic structures are thus not represented explicitly as structures, but rather as a set
of units, each unit stating its relations to other units. Relations are represented only within
the :roles and :backpointers fields of the unit definitions.

3.3 Structure Unification
The most common structural operation involves the unification of units. Unification is

performed as follows:

1. Unify the feature-paths of the two units
If this fails, fail the unification,
else, set the feature field of the first unit to the result.

2. Add each role of the second unit to the first unit.
If the role already exists, unify the role-fillers.
If the unification of roles fails, fail the whole unification.
otherwise, the unification was successful.

3. Make all Pointers to the second unit point at the first unit.
For each relation for which the second unit is the dependent (filler), alter the head
unit to point to the first unit of the unified units.

4. Delete the second unit.



Systemic Unification and Feature Logic 108

Parent world

Child world1

Child world2

Figure 8.2: Showing Child-Worlds as a Disjunction over a
Parent-World

The entry for the second unit in the unit-table is replaced with a pointer to the first
unit. Thus, the unit-id of both the first and second units leads to the entry for the
first, which now incorporates the sum information of both units.

3.4 Structural Disjunction
The WAG KRS allows disjunctive structural assertions to be made, e.g., the

following asserts that a unit p1 has either an Actor role (filled by a unit of type female), or
a Senser role (filled by a unit of type male):

   (tell p1 :constraint (:or (:type Actor female)

                             (:type Senser male)))

To handle feature disjunction, Kasper’s KNF representation is used. However, this
approach is not applicable for structural disjunction in WAG, since structural information
is scattered throughout the unit table, rather than in a single structural form.

Structural disjunction in WAG is handled using a form of lazy copying called a worlds
architecture.6 This architecture assumes a base-world, the knowledge-base where definite
structural information is asserted. When a disjunction is asserted, a child-world is created
for each term in the disjunction, and the term asserted into that world. The child-worlds
also inherit all the information asserted in the base-world (the parent-world of the child-
worlds). The child-worlds are however invisible to each other, and information asserted
into a child-world doesn’t affect the parent-world. This situation is shown in figure 8.2.
Note that child-worlds can have children of their own. The Possible-Worlds architecture
offers a powerful means of handling structural disjunction in an efficient manner.

Each world is implemented as a unit-table, as described in section 3.2 above. The
base-world table usually contains a large number of unit-definitions, while a child-world
table only contains unit-definitions for entries which differ from its parent-world. This is
called lazy-copying -- because only the information which differs is stored into the child-
world.

This Worlds system allows us to select any existing world, and access or assert
information into that world. If we wish to access a unit, what we retrieve depends on
which world we are in. For instance, assume the example above, involving p1. If we are
in the base-world, we would retrieve the information that p1 is a unit, and no further
information7. If we were in Child-World1, we would recover that p1 is a material-
process, and has an Actor role, filled by a unit of type female. If we were in Child-

6I have learnt of the Worlds architecture through its use in the Loom knowledge representation system,
although I do know of any documentation of Worlds.

7WAG does not automatically abstract the common information from a world’s child-worlds.
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World2, we would recover that p1 is a mental-process, and has an Senser role, filled by a
unit of type male.

If we try to access a unit which is not defined in the current world, then the system
will try to retrieve the unit from its parent world, as shown in figure 8.3. The system
might have to look through several layers of worlds until the unit-definition is found.

Child
world1

Child
wor ld2

Par ent
wor ld

Figure 8.3: Information is Recovered from the Parent
World if not found in the Child World.

3.5 Structural Negation
The WAG-KRL allows the assertion of negative statements, such as that a unit does

not have a particular role, or that two units do not unify. Basically, anything which can
be asserted in the positive can also be negated. The semantics of negation of different
operators is described below:

Negated Require: (:not (:require R)): The current unit must have features which
do not allow the insertion of role R. Negation of a role-chain is also possible

Negated Typing: (:not (:type R f)) => (or (:not (:require R)) (:type R (:not f)))
Results in a disjunction: either the :require of the role is negated., or the Role is
asserted to have a feature-description compatible with the negation of the feature.

Negated Same: (:not (:same R1 R2)): if the two references refer to the same unit,
then the assertion will return fail. If the units are not at this point identical, then
any attempt to unfiy the units in the future will fail. This is acheived through use
of the :cant-unify field of the unit structure, which records the units which the
unit cannot unify with.

Negated Fill: (:not (:fill R unit-id)): if the the unit-id is presently the filler of the
role reference, then the assertion fails. Any attempt to make the unit the filler of
that role later will also fail.

Negated Conjunction: (:not (:and a b c)) => (:or (:not a) (:not b) (:not c))
The negation of a conjunction is the same as the disjunction of each of the terms
negated.

Negated Disjunction: (:not (:or a b c) ) => (:and (:not a) (:not b) (:not c))
The negation of a disjunction is the same as the conjunction of each of the terms
negated.

Negated Negation: (:not   (:not  <constraint>))     =>    <constraint>
Double negations cancel out.
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4. WAG’s Constraint Language

The WAG constraint language is used for several purposes, including the expression
of realisation statements, and feature-selection constraints. It also allows users or
programs to assert knowledge, e.g., to build up an ideation base. This section outlines
the formalism of the language. In the following discussion, keep in mind that constraints
are always interpreted in relation to some current unit -- structural assertions are
assertions about a particular unit.

A constraint statement consists of an operator (e.g., :order, :type, :same, etc.),
followed by a set of arguments. The arguments of the constraints vary, but typically, the
first argument specifies some unit (for instance, a role of the current unit), and the second
argument specifies some characteristic of the unit. (e.g., a feature it must have).

4.1 Referring to Units
Before exploring the various types of constraints, I will outline the various ways in

which a unit can be referred to in a constraint:

Immediate Role: a role-name by itself refers to the filler of the role for the current
unit, e.g., Subject;

Role-Chain: a chain of roles can refer to the role of a role, or the role of a role of a
role, etc.; e.g., Subject.Head;

Back-pointer: a role-name preceded by ‘^’ reverses the role, e.g., the ^Subject of
a nominal-group point back to the clause. A back-pointer can occur in any
position in a role-chain, e.g., Referent.^Proposition.;

Present unit: an ‘!’ by itself refers to the current unit. Thus (:type ! plural)
preselects the current unit to have a particular feature;

Reference through a Variable: a lisp variable delimited by ‘*’ refers to the unit-
id contained in the variable, e.g., given that *Speech-Act* is a variable which has
previously been assigned the unit-id of the current speech-act, the speech-act can
be assigned features using a constraint such as (:type *Speech-Act* elicit).

4.2 Structural Operators
Tables 8.2, 8.3 and 8.4 show the operators used in WAG’s constraint language. Table

8.2 shows the general operators, used on all strata. Table 8.3 shows some operators
specific to textual representation, which were introduced in chapter 5. Table 8.4 shows
operators which are grammar-specific -- only apply to grammatical structures. Most of
the operators are standard Systemic realisation operators, as introduced in chapter 2, e.g.,
insert, conflate, preselect, order, partition and lexify. Some operators are re-labeled using
WAG’s nondirectional and non-process-oriented labeling. In such cases, the standard
Systemic labels are shown beneath. Wherever <role> appears in the argument list, any of
the unit-reference forms mentioned in section 4.1 can be used.
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Operator Arguments Example Description
:require
(insert)

<role> (:require Senser) The nominated role is required to be present.

:same
(conflate)

<role1>
<role2>

(:same Modal
Finite)

The nominated roles are filled by the same
element, e.g., in a modal clause, both the Modal
and the Finite role are filled by the same unit.

:type

(preselect,
classify,

inflectify)

<role>
<feature-expr>

(:type Senser
conscious)

The nominated role must be filled by a unit with
the specified feature-expression. The feature-
expression can be a single feature, or a logical
combination of features, using any combination
of and, or or not. For instance:
   Subject : (:and nominal-group

(:or nominative accusative)
(:not wh-head))

:restrict
(outclassify)

<role>
<feature-expr>

(:restrict Subject
 accusative)

The nominated role must not be filled by a unit
with the specified feature-expression. The feature
feature-expression can be logically complex.

:fill <role>
<filler>

(:fill Actor Fred)

The nominated role must be filled by the
designated filler. The filler is typically a unit-id,
but can be a string, or a number. If no unit
exists with the unit-id, then a unit of the
designated id will be created.

<, <=, =, >=,
>, <>

<role1>
<role2>

(> Speaking-Time
Reference-Time)

Various ordering operators. The designated units
must be ordered as specified. Grammatical
ordering is handled by :order and :partition -- see
below in grammatical operators.

Table 8.2 General Constraint Operators

Operator Arguments Example Description
:relevant <role> (:relevant Referent) The nominated unit must be on the list of relevant

ideational entities.

:recoverable <role> (:recoverable
Referent)

The nominated unit must be on the list of
recoverable ideational entities.

:shared-entity <role> (:shared-entity
Referent)

The nominated unit must be on the list of shared
ideational entities.

Table 8.3 Textual Constraint Operators

Operator Arguments Example Description
:order <role-list> (:order Subj Fin) The filler of the first role is sequenced directly before

the second. Any number of elements can be sequenced
in a single statement. See chapter 2 for more details.

:partition <role-list> (:partition Process
Manner)

The roles appears in the order specified, but not
necessarily immediately adjacent to each other. See
chapter 2 for more details.

:lexify <role>
<lex-id>

(:lexify Deictic
the-det)

The role-filler is assigned a Lexical-Item role, which
is filled by the lexical-item with the specified unit-id.
The word-rank unit is assigned the grammatical
features from the lexical-item. Lexify overrides any
preselections which may apply to the same unit.

:presume <role> (:presume Subject) The specified role, while present in the structure for
ordering purposes, is for other purposes not present in
the structure. For instance, presumed units are not
realised in generation.

Table 8.4: Grammar-Specific Constraint Operators
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Operator Syntax Description

:and (:and <structural-constraint1>
         <structural-constraint2>
         ....  )

All the constraints in the body of the conjunction are
asserted. Returns nil if any fails.

:or (:or   <structural-constraint1>
         <structural-constraint2>
         ....  )

Each of the constraints in the body of the disjunction are
asserted disjunctively (see section on structural disjunction
below). At least one of the constraints conjoined by this
operator must be true. Return nil if all fail.

:not (:not <structural-constraint>) The structural constraint should fail.

Table 8.5: WAG’s Logical Operators

4.3 Logical Operators
Constraints can be logically complex, consisting of a logical combination of

constraint-statements, e.g.,

  (:or (:type *speech-act* propose)

       (:not (:same *Speech-Act*.Hearer Agent.Referent)

Table 8.5 shows the logical operators used in the WAG constraint language.

5. Summary

WAG’s implementation of the Systemic formalism handles the representation of both
Systemic resources (potential), and Systemic structures and fields (instantials). The
formalism can be used for representation on any stratum, which has been demonstrated in
this thesis, in regard to semantics (ideational, interactional and textual), and lexico-
grammar.

The WAG-KRS allows various processes involving the resources and structures,
including feature operations (finding the path of a feature or complex of features, and the
unification of such paths), and structure operations (structural unification, disjunction and
negation).

These processes and representations form a platform on which various higher level
processes can be constructed. Both sentence generation and sentence analysis, reported in
the remaining chapters, utilise the functionalities of the WAG-KRS.

This is the first generalised knowledge representation system based on the Systemic
formalism. Most implementations using Systemic grammar use processes which are
specific for one processing purpose -- generation or analysis. Those systems which take
a generalised approach have translated the Systemic resources into another, non-
Systemic, formalism (e.g., Bateman et al. 1992; Kasper 1988a, 1989).

A Worlds Architecture has been used to represent disjunctive structural information.
This has proven a powerful and efficient tool for representation in an area which is often
problematic.

Structural negation is also implemented for a wide range of negation possibilities.
There are, however, still a few areas where negation is not complete, e.g., the negation
of the unification of two units does not stop those units from being unified in the future.
Further work will address these problems.


