
Chapter 10

The WAG Analyser

1. The Stages of Sentence Analysis

The WAG system includes a sentence analyser, which reads in paragraphs of text, and
produces a micro-semantic analysis of each sentence. The WAG parser was initially
developed as part of the Electronic Discourse Analyser (EDA) project, funded by Fujitsu
(Japan). Analysis in WAG can be broken up into four stages:

1. Graphological Analysis: the text is broken up into sentences, graphological-
words, punctuation, etc.;

2. Lexical Analysis: Using the lexicon, each graphological word and punctuation
mark is assigned a set of candidate lexical items, and associated inflectional class;

3. Grammatical Analysis: a lexico-grammatical representation (sometimes
several) is produced from the string of lexical-items;

4. Micro-Semantic Analysis: a micro-semantic representation is derived from
each lexico-grammatical representation.

Figure 10.1 shows a) how these stages relate to each other; b) the resources each
process requires; and c) the flow of information between stages (inputs and outputs). The
rest of this chapter will describe the stages in more detail. The resources involved in the
processing (graphological, lexico-grammatical and micro-semantic resources, the lexicon,
and semantico-grammatical mapping constraints) are described in Part A of this thesis.

120

The WAG Analyser 121

Linguistic
Analyser

 Linguistic Resources

Lexico-
Grammar

Lexicon

Graphological
Analyser

Graphological
Analysis

Lexico-Grammatical
Analyser

Lexico-Grammatical
Analysis

Micro-Semantic
Analyser

Micro-Semantic
Analysis

Se ma ntic -
Gr a mma r
Ma pping

Mic r o-
S e ma ntic s

Lexical
Analyser

Lexical
Analysis

Text

Grapho
-logy

Figure 10.1: An Overview of the Analysis Process

2. Graphological Analysis
The first stage of sentence analysis is graphological analysis. This process involves:

• Segmentation of the text into sentences, which are in turn segmented into
graphological-words and punctuations;

• De-capitalisation of sentence-initial forms, unless entered in the lexicon as a
proper noun;

• Recognition of multi-word terms, e.g., New Zealand would be returned as a
single spelling.

Graphological and lexical analysis are to some degree inter-leaved, since the
graphological interpretation of a string of characters sometimes depends upon the lexical
status of the string. For instance, in the de-capitalisation step above, the graphological
analyser needs to know if the word is available as a proper noun or not. The recognition
of multi-word items also requires some inter-leaving.

The graphological analysis of the following sentence...

With a TSS session, this character string is entered in accordance with the prompts
provided when the LOGON command is entered.

...would result in the following list:

The WAG Analyser 122

("with" "a" "TSS session" "," "this" "character string" "is" "entered"
"in accordance with" "the" "prompts" "provided" "when" "the" "LOGON
command" "is" "entered" ".")

In some cases, sequences of words are recognised as a single compound word, e.g.,
"TSS session". The lexicon stores some technical phrases as if they were single words.
This will be discussed below.

3. Lexical Analysis

The output of graphological processing is made available to the lexical-analyser. The
lexical analyser uses the lexicon to produce alternative lexical interpretations of each
graphological-word. These lexical analyses are then made available to the parser.

3.1 Morphological Analysis
To discover the lexical item corresponding to a particular spelling, two approaches are

possible:

Morphological Analysis: The morphology rules are applied to the spelling, to
recover the root form, and the inflection class.

Generate and Test: For each item in the lexicon, the spelling of each inflectional
variant is generated. Each inflection whose spelling matches the target spelling is
returned as a lexical candidate.

Key Value
“can” can-noun singular-noun

can-aux nil
can-verb (:and present non-third-person-singular)

“canned” can-verb past

Table 10.1: A Sample of the Spelling Table
For large lexicons, morphological analysis is the most efficient solution.

Unfortunately, morphological analysis is a complex task, which I have not yet
implemented. The generate-and-test option, by itself, is not very attractive. However, it
becomes workable if we perform the generation as a pre-compilation task: as the lexicon
is loaded in, the possible spellings of each lexical item are generated, and stored away in
the spelling table. Table 10.1 shows a small section of the spelling table.

Finding the lexical-items for a particular graphological-word is thus a simple table
lookup. The key to the table entry is the word’s spelling. The value component is a list of
entries, the first item being the lexeme identifier, the second being the inflection for which
this spelling is appropriate. The generation of the spelling table amounts to a re-indexing
of the lexicon into a form more amenable to parsing.

If a particular graphological word is not found in the spelling table, then a program is
called to acquire the lexical-item information: the user is prompted to provide the semantic
and grammatical features of the item, as well as the spellings of inflectional forms.

3.2 Compound Words in Parsing
WAG allows multi-word (compound) items to be entered in the lexicon as a single

lexical item. These compound items are then treated the same as non-compound words.

Compound items may be of several kinds:

• Compound Proper Nouns, e.g., “New Zealand”.

• Compound Technical Terms: A string of words which recurrently occurs in
a register may be treated as a single lexical item, e.g., “Direct Access Storage
Device”. These are usually treated as a common noun, and can thus be modified

The WAG Analyser 123

Precompilation
of

Resources

Analysis
compiled
resources parse

 sentence

Figure 10.2: Precompilation before Processing

in the same manner as other common nouns, e.g., “a small Direct Access Storage
Device from Spain”.

• Phrasal Verbs: Compound verbs such as “put up”, e.g., “He put up a sign”.
WAG doesn’t yet allow for the separated realisation of the elements of a phrasal
verb, e.g., “He put a sign up”.

• Phrasal Lexicon: Longer phrases which are to some degree fixed in structure,
and lose their meaning when decomposed, can be entered in the lexicon, e.g.,
“kick the bucket”, meaning, “to die”. This example would be treated as an
intransitive verb, and the various inflectional variants acquired, e.g., ing-verb:
“kicking the bucket”.

4. Preparation of the Parsing Grammar

The Systemic formalism has a top-down orientation: it mainly presents what types of
roles each unit can have, and what types of units can fill these roles. This is ideal for
generation, where top-down processing is preferred. However, the orientation of these
resources is not well suited to bottom-up processing, which is the most efficient strategy
for parsing with large grammars.

Bottom-up parsing requires an upwards orientation of the grammar. It is more
concerned with knowing what roles a given unit can fill (the function potential of the
unit), rather than what constituents it can have.

This section describes the automatic extraction of a parsing-oriented grammar from the
usual top-down oriented Systemic grammar. The Systemic resources are re-compiled into
a parsing-grammar. By using a grammar tailored for bottom-up parsing, the efficiency of
the parser is increased dramatically, increasing the size of the grammar that the parser can
use.

This compilation is often called precompilation, since it represents a compiling of the
resources before parsing begins (see figure 10.2). Precompilation can be seen as
performing some of the parsing work before even looking at the input sentence. Because
precompilation shifts work from the parser itself, parsing times are substantially reduced.

4.1 Register Restriction of the Grammar
The WAG parser was intended to parse using the Nigel grammar, a comprehensive

grammar of English comprising around 750 systems, and 1500 features. Since parsing
with this grammar was found to be very slow, the grammar was reduced in size. The
grammar was reduced using register restriction -- elimination of parts of the grammar
which were unlikely to be utilised in the target texts. For example, in a domain of
computer manuals, the interrogative structures are not likely to be used1. By eliminating
these from the grammar, the overall complexity is reduced, and thus forms which do

1Some of the restricted forms may actually appear in any one text, although quite rarely. There is a trade-off
between speed for the majority of sentences, and ability to parse all sentences in a text.

The WAG Analyser 124

appear in the grammar can be parsed faster. The method of deriving the register-restricted
grammar is as follows:

1. A section of the target text (computer manuals) is parsed by hand2, thus building
up a register-profile of our target texts.

2. An automatic procedure extracts out all the grammatical features which occur in
these sentences.

3. This information is used to discover which features do not occur in the sample.

4. These features and their realisations are then eliminated from the grammar.

The register-restriction produces a grammar which covered all the sentences in the
sample, and a reasonable number of those which are not in the sample, depending on the
size of the sample (a larger sample would produce a more accurate register profile). The
size of the grammar was reduced by approximately 50% using this method.

Register restriction is only necessary when dealing with Systemic grammars which are
too large for the parser -- when using a smaller grammar, no register restriction needs to
be applied.

4.2 Partial-Structures
The next step involves transforming the lexico-grammatical resources into the parsing-

grammar. Before discussing this precompilation process, I will first introduce the notion
of partial-structures, the basic component of the parsing-grammar. The left-hand side of
figure 10.3 shows a systemic feature and its associated realisation statements. The right-
hand side of the figure shows the same information, except re-represented as a fragment
of a structure tree, or what I will call a partial-structure (the ‘.’ between the Subject and
the Finite element indicates that they are unordered with respect to each other; the dotted
lines at each end of the partial-structure indicate that other elements can precede or follow
these elements).

finite-clause
+Fini te;
+Subject ;
Subject : (:and nominal-group
 nominat ive)

[finite-clause]

Subject
[nominal-group:

nominative]

.
Finite

[]

Figure 10.3: Re-Representing a Feature & Realisation as a Partial-Structure

The whole grammar can be re-represented in this manner, representing a shift from a
paradigmatically-organised grammar (emphasising features) to a syntagmatically-
organised grammar (emphasising structure). However, we will see below that the partial-
structures used in the parser are not the same as those shown so far.

This syntagmatic re-representation of the grammar is similar to the approach taken by
Kay (1979, 1985). In the Seventies, Kay had been experimenting with parsing with
various formalisms, including Systemics. He found that by re-representing grammars in
a form closer to the product of analysis (a structural representation), processing was
facilitated. Processing becomes simply a matter of unifying these structural fragments.
He developed the Functional Unification Grammar (FUG) formalism for this purpose.

2The hand-parsing is really computer-assisted, -- a tool was developed to traverse the system network for
each sentence (and each constituent of the sentence) asking the human which features are appropriate for the
target string. This process guaranteed that the human-analysis conformed to the computational grammar. The
coding of the text was undertaken by Arlene Harvey and Chris Nesbitt, as part of the EDA project.

The WAG Analyser 125

[finite-clause]

Subject
[nominal-group:

nominative]

. Finite
[]

[modal]

Mod/Finite
[modal-aux]

ModC
[en-verb]

+

[finite-clause: modal]

Subject
[nominal-group:

nominative]

. Finite/Mod
[modal-aux]

ModC
[en-verb]

#

Figure 10.4: Unification of Two Partial-Structures
Produces a New Partial-Structure

Kasper (1988a) utilised the similarities between FUG and Systemic Grammars to
parse with the Nigel grammar. He translated the grammar into FUG, and used an existing
FUG unifier in his parser. See Kasper (1986) for discussion of the re-representation of
Systemic grammar in FUG.3

The unification of two partial-structures produces another partial-structure, which
contains the sum of the information from both partial-structures, as shown in figure 10.4
(the ‘#’ sign between the Modal role and its complement indicates that the two units are
partitioned in relation to each other -- other units may intercede).

Unifications such as these continue until a structure covering the whole sentence is
produced. Unification of partial-structures is the basic operation in WAG’s parsing
process.

4.3 The Partial-Structures of the Parsing Grammar
In this section, I describe the re-expression of the lexico-grammatical resources in a

form more useful for bottom-up analysis. Basically, the lexico-grammar and the lexicon
are re-represented as a set of partial-structures. The parser uses these partial-structures for
analysis -- not the resources as normally used. I will firstly show what types of partial-
structures are used, and then show how they are used. For more details regarding the
actual production of these partial-structures from the Systemic resources, refer O’Donnell
(1993).

4.3.1 ‘Lexical’ Partial-Structures
Three types of partial-structures are used, the first is derived from lexical items. One

partial-structure is produced for each inflectional variant. Lexical partial-structures are not
pre-compiled, but rather produced during the lexical-analysis phase. Figure 10.5 shows a
partial-structure derived from the lexical-item named they-pron. A lexical partial-structure
contains the features from the :grammatical-features field of the lexical item, to which is
added the inflectional feature (in this example, the nominative-pronoun feature).

3Mellish (1988) also compares the Systemic formalism to FUG. However, he limits his discussion to
translating systems, not mentioning the translation of realisations.

The WAG Analyser 126

word: pronoun: plural-pronoun:
nominative-pronoun: definite-pronoun:

noninteractant-pronoun: personal-pronoun

Spelling

"they"

Figure 10.5: A Partial-Structures Derived from a Lexical-Item Definition.

4.3.2 ‘Linking’ Partial-Structures
A second type of partial-structure used in the WAG parser is derived from the

preselection rules of the grammar. Figure 10.6 shows one such partial-structure, which
was derived by combining the preselections which involve the Thing role of a nominal
group, and eliminating those combinations which are incompatible. The partial-structure
shown is only one out of several valid combinations. Each of these is called a linking
partial-structure, because it represents the constraints on the linking between a parent unit
and one of its constituents. It is the partial-structures, rather than the preselection rules
from which they are composed, that are used by the parser.

pronoun nominat ive-pronoun
noninteractant-pronoun

plural -pronoun

Thing

pronom-group
nominat ive
 3p-group

plural -group

Figure 10.6: A Linking Partial-structure

Sometimes a constituent is linked to its parent through a number of roles, rather than a
single role. Figure 10.7 shows another linking partial-structure, this time representing the
combination of preselections from two conflated roles. The realisation rule which
conflates these two roles is also incorporated into the partial-structure.4

4The examples in this chapter draw upon the WAG grammar, which provides only Ergative and Mood
structure at clause level. The Nigel grammar would provide role-bundles involving up to five roles.

The WAG Analyser 127

Subject/Agent

finite-clause agent-inserted
subject-agent-conflated

3rd-person-subject
plural-subject nonwh-agent

nominal-group plural-group
3p-group nominative

(:not wh-group)

Figure 10.7: A Linking Partial-Structure involving Two Roles.

4.3.3 ‘Ordering’ Partial-Structures
That part of the lexico-grammatical resources which concerns the ordering of

constituents is extracted out of the grammar, and re-represented as a set of ordering
partial-structures. Each of these partial-structures represents the adjacency between two
roles, and the condition under which that adjacency is allowed. One of these is produced
for each sequencing of two roles allowed by the grammar. Figure 10.8 shows a typical
example. It is derived by combining the two realisation statements which allow the order
(realisations of features declarative and wh-subject), and restricting the possibility of the
Subject being presumed.

Insertion realisations are sometimes involved, since order and partition realisations
may contain optional elements. The insertion statements are used to find the condition
under which an optional element is actually present or absent in the structure.

Subject Finite

subject-not-presumed
(:or declarative wh-subject)

Figure 10.8: An Ordering Partial-Structure

Conflation statements are also sometimes involved, since roles are not always
explicitly ordered, but sometimes ordered through a conflated role. For instance, assume
we wanted to find what can follow the Finite element. One realisation shows that Finite
can conflate with the Mod role, and another shows that ModC can be partitioned after
Mod. Figure 10.9 shows the ordering partial-structure which results from the
combination of these realisations.

Since Mod and ModC are partitioned rather than ordered, we need to restrict the
possibility of another element interceding between them: the Subject in a polar-question
(“Will she come?”), and a Negator in a negative-clause (“She will not come”). The two
disjunctions in the condition restrict these possibilities.

The WAG Analyser 128

modal-clause
(:or positive-clause
 negation-in-finite
(:or declarative
 wh-subject)

Finite/Mod ModC

Figure 10.9: An Ordering Partial-Structure Using Conflation
Two important kinds of ordering partial-structures involve the pseudo-roles Front and

End. The first kind show which roles can start a unit, and under what conditions. Figure
10.10 shows a partial-structure which includes the conditions under which the Thing role
can occur as the first element of a nominal-group.

The second kind shows the condition under a unit can end a structure. For instance,
figure 10.11 shows the partial-structure which allows the Thing role to be the final
element in a nominal-group.

nominal-group
(or proper-group
 pronom-group
 (:and common-group nondeixis
 nonnumerated noneptitheted
 nonclassified))

Front Thing

non-qualified
(:or nominative accusative)

EndThing

Figure 10.10: A Partial-Structure Ordering
Thing at the Front of a Group

 Figure 10.11: A Partial-Structure
Ordering Thing at the End of a Group

4.3.4 Summary of the Precompilation Stage
The lexico-grammatical resources are re-represented as sets of partial-structures,

which are then used as the parsing-grammar. Figure 10.12 shows the relationships
between the Systemic resources and the resources as used for parsing.

The WAG Analyser 129

System Network
and associated

Real isat ions

Lexicon

Link
Part ial -Structures

Ordering
Part ial -Structures

Lexical
Part ial -Structures

 Systemic Resources Parsing Resources

Compi led
Paths & Negat ions

Figure 10.12: Compiling Out the Parsing Grammar

In addition to the partial-structures, the parser needs information about feature
combinability. Rather than using the system networks themselves, the system path and
system negation tables (see chapter 8, section 2.5) are used as a resource to control the
unification of feature-specifications. For instance, when two partial-structures are
unified, the feature-specifications of corresponding units are unified. If the unification
fails, then the unification of the partial-structures fails.

5. Lexico-grammatical Analysis

The previous section introduced the three basic partial-structures used in the parser.
Each of these is derived from the resources: lexical partial-structures from the lexicon,
and linking and ordering partial-structures from combinations of realisation statements.

It remains to be shown how these partial-structures are put together during parsing.
This section describes the parsing algorithm used in WAG - the process which
transforms a graphological representation into a lexico-grammatical representation.

The general strategy for parsing in WAG is as follows:

• Bottom-Up: the WAG parser uses a bottom-up ("data-driven") control
strategy, since this strategy makes best use of the available information. A top-
down approach needs to make many structural hypotheses before reaching the
input string, even using a depth-first strategy. For parsing with a large Systemic
grammar, such as Nigel, the bottom-up strategy is most efficient.

• Breadth-First: For the same reason, breadth-first parsing is preferred, seeing
all the data before building too much structure.

• Left-to-Right Analysis: A left-to-right strategy is used: the parse tree is
constructed by successively incorporating words from the front of the input
string into the parse structure (based on the left-to-right ordering of the source-
representation).

• No Top-Down Filtering: top-down filtering was initially used in the parser,
but was dropped, since it actually slowed the parser down. As the coverage of a
grammar increases, the range of items which can fill any particular role increases,
and thus the savings of top-down restriction diminishes. For the WAG parser,
the time spent in performing the top-down filtering was greater than the time
saved in parsing.

The WAG Analyser 130

noun

NP -> det adj . noun

adj

 N1 N2 N3N0 N4the orange cat sat

det

NP -> det noun .

S -> NP . VP

Figure 10.13: A PSG Chart after the Recognition of Two Words
• Non-Deterministic: The parser does not attempt to resolve each decision as

reached, but rather pursues all alternatives.

• Chart Parser: A chart table is used to store successful analyses (passive edges),
and analyses under construction (active edges).

• Exhaustive Search: The parser produces all possible parses from the input
string.

5.1 The Parse-Chart
The parse-chart is a data-structure which keeps track of analyses under way. It stores

both:

• completed analyses of sequences of words, e.g., a completed nominal-group.
This is called the passive chart, and is basically a well-formed substring table (see
chapter 9);

• analyses which are still waiting for further elements to complete them, e.g., a
nominal-group for which only a Deictic element has been recognised. This is
called the active chart.

The analyses are called edges, because the parse chart is conceptualised as a graph.
The point between each word is a node, and the edges connect these nodes together. An
edge represents a partial or complete analysis of the words contained between its start-
node and its end-node. An edge representing a completed analysis is called a complete
edge, and an edge representing an analysis in progress is called an incomplete edge.

I will use a phrase-structure grammar chart to demonstrate the chart. Figure 10.13
shows the result of parsing the first two words of a sentence. The lines represent edges.
Those above the sentence represent complete edges. Thus the first word provides one
analysis, the second, two (orange is lexically ambiguous). There is also a completed edge
which spans these two words, an NP analysis.

Incomplete edges are shown beneath the sentence. These represent analyses still in
progress. This chart has two incomplete edge, one for an NP which has so far recognised
the det and adj elements, and is still waiting for the noun. The other is for an S unit, and
so far an NP has been recognised. The ‘.’ in the rules shows how many of the rule’s
elements have been recognised so far. In a completed edge, the dot is at the end of the
rule.

The WAG Analyser 131

noun

NP -> det adj . noun

adj

N1 N2 N3N0 N4the orange cat sat

det

NP -> det noun .

S -> NP . VP

NP -> det adj noun .

noun

Figure 10.14: Extending an Incomplete Edge
The parse-chart carries all analyses of the sentence forward simultaneously. As each

new word is introduced, it is incorporated into each incomplete edge which is waiting for
that category of item. For instance, to incorporate cat into the parse-chart, there is one
incomplete edge waiting for a noun, so this edge can be extended, producing a new
complete edge, as shown in figure 10.14.

The incomplete-edges in the example all included at least one recognised element. Part
of the chart-parsing strategy involves introducing, at each node, a set of starting edges.
Starting edges are incomplete-edges with no element recognised yet. We introduce one
such edge for each rule in the phrase-structure grammar. For example, one of these edges
would be labelled ‘NP -> . det noun’, with the dot before the first element. These starting
edges represent the potential analyses which can start at the node. As we introduce each
new lexical-item, we see if it can extend any of the starting-edges (as well as the other
incomplete edges).

A Systemic chart-parser operates in principle much like the PSG chart-parser
described above. There are however some difference:

a) the categories which label the edges are more complex. Each edge represents a
partial-structure, rather than a PSG rule;

b) an incomplete edge doesn’t include a list of constituents still to recognise: the
edge only shows the elements which have been recognised so far. To discover
what can extend the edge, ordering partial-structures are used to predict what can
follow the last-recognised element.

c) While a PSG chart requires one starting-edge for each rule in the grammar, a
Systemic chart-parser requires only a single starting edge per node. It is simply a
partial-structure for the front of a grammatical unit, with minimal feature
information -- see figure 10.15. This partial-structure, in conjunction with the
various ordering partial-structures involving Front, allows us to predict what
roles can be first element of an edge.5

[grammatical-unit]

Front

Figure 10.15: A Systemic Starting-Edge

5This is not to be confused with top-down filtering: what we do here is just predict the functional roles
which can follow at this level of structure, while top-down filtering involves prediction of the range of
grammatical elements which can follow at this level or any level below (the first constituents).

The WAG Analyser 132

5.2 Advancing Through the Parse String
Figure 10.16 provides a flowchart of the basic parsing algorithm. The process selects

the next graphological-word from the front of the input string, from which all possible
lexical analyses are derived. One lexical partial-structure is produced for each analysis.
These lexical partial-structures are then incorporated into the parse-chart, one at a time.
For instance, assuming we are parsing “They will come”, the lexical analysis of the first
word produces a single partial-structure, shown in figure 10.17 (repeated from figure 5
above). Lexical analysis and Grammatical analysis are thus interleaved - the processor
lexically analyses a word, then incorporates this analysis into the parse-tree.

Read in Next
Word

Lexically Analyse
Word

Incorporate Lexical
Partial-Structures

into Chart

graph-word

set of candidate
partial-structures

Start

Figure 10.16: Advancing Through the Parse String

word: pron o u n: p lural-pro n o un:
n ominative-pro n o un: defin ite-pro n o u n:

n on in teractan t-pron o u n: perso nal-pro n o u n

Spelling

"they"

Figure 10.17: A Partial-Structures Derived from a Lexical-Item Definition.

The WAG Analyser 133

5.3 Incorporating Partial-Structures into the Chart
As each lexical partial-structure is recognised, it needs to be incorporated into the

parse-chart. I will now describe this incorporation in more detail. Figure 10.18 shows the
basic algorithm. The stages of this process are described below.

E N D

Assig n Role-Bu n dle
to Item

Structurally Place
Item

Yes

=>
[pronoun]

they

Store Resu lt
in Active Chart

N o

Can Unit be
Completed

?

[nominal gr oup]

T hing
[pr onoun]

=>
[nom. group]

T hing
[pr onoun]

[nom. gr oup]

T hing
[p ronoun]

E nd

Complete
 Item

Star t

=>
[nom-gr oup]

T hing
[pronoun]

[nom-gr oup]

T hing
[pr onoun]

F ront

[gram- unit]
+

Store Resu lt
in Passive Chart

Figure 10.18: Incorporating Lexical Items Into the Parse Chart

5.3.1 Role Assignment
The first step in the incorporation of a lexical partial-structure into the parse-chart

involves discovering what constituency roles the unit can fill. To do this, we attempt to
unify each of the linking partial-structures with the lexical partial-structure, to see which
are compatible.6 Figure 10.19 shows the lexical partial-structure from above unifying
with one of the linking partial-structures, producing a group-level partial-analysis of the
pronoun.

wor d: pr onoun:
plur a l- pr onoun:

nomina tive- pr onoun:
de f inite - pr onoun:

noninter a c ta nt-pronoun:
pe r sonal- pr onoun

Spel l ing

"t hey"

pr onoun: nomina tive - pr onoun
noninte r a c ta nt- pronoun

plur a l- pr onoun

pronom- gr oup
nominative
 3p- gr oup

plura l-group

Th i ng

+
wor d: pr onoun:
plura l-pronoun:

nomina tive - pr onoun:
 de f inite -pr onoun:

noninte r ac tant- pr onoun:
per sona l- pr onoun

Spel l i ng

"t hey"

pr onom- gr oup
nomina tive
 3p- gr oup

plur al- gr oup

Th i ng

Figure 10.19: The Role-Assignment Operation

6In practice, various methods are used to limit the number of linking partial-structures actually matched
against the lexical partial-structure.

The WAG Analyser 134

5.3.2 Structural Placement
The role-assigned partial-structure has resulted from the analysis of a single word in

isolation. We now need to incorporate it into the parse-chart, using it to extend one or
more of the incomplete-edges in the chart.

At this point we have only one incomplete-edge on the chart -- the starting-edge. To
unify the partial-structure with this starting-edge, we need to first fetch the ordering
partial-structure which constrains the Front ^ Thing ordering. Figure 10.20 shows the
unification of these three partial-structures, resulting in an incomplete-edge for the first
word of the sentence.

wor d: pr onoun:
plur a l- pr onoun:

nomina tive - pr onoun:
de f inite - pr onoun:

noninte r a c ta nt- pr onoun:
pe r sona l- pr onoun

Spel ling

"they"

pr onom - gr oup
nomina tive
 3p- gr oup

plur a l- gr oup

Thing+

wor d: pr onoun: plur a l- pr onoun:
nomina tive - pr onoun: de f inite - pr onoun:

noninte r a c ta nt- pr onoun: pe r sona l- pr onoun

Spell ing

"they"

Thing

pr onom - gr oup
nomina tive
 3p- gr oup

plur a l- gr oup

nomina l- gr oup
(or pr ope r - gr oup
 pr onom - gr oup
 (:a nd c om mon- gr oup nonde ixis
 nonnum e r a te d none ptithe te d
 nonc la ssif ie d))

ThingFrontFront

[gr a m m a tic a l- unit]

+

Figure 10.20: Placing a Partial-Structure at the Beginning of a Unit

5.3.3 Completing A Unit
After an incomplete edge has been extended, we need to test if the extended edge can

be transformed into a completed edge. To do this, we look for the ordering partial-
structure which allows End to be the next element, and unify it with the edge. Figure
10.21 shows this process. The partial-structure on the left represents the incomplete-edge
produced in the last stage. The linking partial-structure which allows Thing^End is
retrieved from the parsing resources, and unified with the incomplete-edge. The result is
a completed edge, an analysis of a nominal-group.

The WAG Analyser 135

w o rd : p ro n o u n : p lu ral -p ro n o u n :
n o min ativ e-pro n o u n : d efin i te-p ro n o u n :

n o n in teractan t -p ro n o u n : p erso n al-p ro n o u n

Spelling

" they"

Thing

p ro n o m-g rou p
n o min at iv e
 3 p -g ro u p

p lu ral-g ro u p

n o n -q u alified
(:o r n o min ativ e accu sativ e)

EndThing

+

wo rd : p ro n ou n : p lu ral-p ro n o u n :
n o min ativ e-p ro n o un : d efin ite-p ro n o u n :

n o n in teractan t-p ro n o u n : p erso n al-p ro n o u n

Spelling

" they"

Thing

p ro n o m-g rou p
n o min at iv e
 3 p -g ro u p

p lu ral-g ro u p
n o n -q u ali fied

Figure 10.21: ‘Completing’ a Partial-Structure.

The completion of the nominal-group is only one of the structural possibilities. The
incomplete edge also remains in the chart, perhaps to be extended by later occurring
items, e.g., waiting for a Qualifier (e.g., “they who died”).

5.3.4 Recursion of These Steps
This last step resulted in a completed nominal-group. We must then repeat the role-

assignment, structural placement and completion steps for this edge. Figure 10.22 shows
one possible role-assignment for the completed edge from figure 10.21: the nominal-
group as Subject/Agent. Another candidate would be Subject/Medium.

5.3.5 Summary
I have described parsing as the recursive application of three steps -- role-assignment,

structural-placement and completion. As each lexical-item is incorporated into the parse-
chart, the parser then moves on to incorporate the next lexical-item, until all items are
incorporated.

5.4 Lexico-Grammatical Output
After the last lexical-item is incorporated into the parse-chart, we can extract the

successful analyses from the chart. Successful analyses are completed-edges which span
the entire sentence. Some sentences will produce only one successful analysis, while
others will produce a large number of alternative analyses. Multiple analyses exist

+

w or d: p ronoun: plur al- pronoun:
nominative- pronoun: def inite- pr onoun:

noninteractant-pr onoun: personal- pr onoun

Spellin g

" they "

Thin g

pr onom- gr oup
nominative
 3p-gr oup

plur al- gr oup
non-quali fied

f inite- clause: agent- inser ted
active: 3rd -per son- subject

p lur al -sub ject: nonw h- agent

Subject/Agent
nominal- gr oup: plur al -gr oup:

3p- gr oup: nominative:
(:not w h- gr oup)

w or d: pr onoun: plur al -pr onoun:
nominative-pr onoun: def inite-pr onoun:

noninter actant- pr onoun: per sonal- pr onoun

Spellin g

" they "

Thin g

nominal- gr oup
pr onom- gr oup

nominative
 3p- group

plural- gr oup
non- qualif ied

Su bject/Agent

f inite- clause: agent- inser ted
active: 3r d- per son- subject

plur al- subject: nonw h- agent

Figure 10.22: Role-Assignment -- Second Round

The WAG Analyser 136

because of grammatical ambiguity -- the resources allow alternative interpretations of the
input string. This may be due to multiple senses of lexical items (e.g., a dog’s bark vs. a
tree’s bark), or perhaps due to different ways of attaching units together.

The main ambiguity in my experience is due to the pp-attachment problem -- a
prepositional phrase at the end of a sentence may attach to the clause (as a Circumstance),
or to the Complement (as a Qualifier). For instance, in “I saw the girl with a telescope”, it
is not clear whether “with a telescope” is attaches to saw (what I saw with), or to the girl.
(what the girl had). Given two or three prepositional-phrases at the end of a clause, the
number of possible structural interpretations can become quite large.

Figure 10.23 below shows one of the parse-trees produced from parsing “A user-
password is a character string consisting of a maximum of eight alpha-numeric
characters.”. Several analyses were produced, corresponding to different attachments of
the non-finite clause -- “consisting of...” -- and also of the prepositional-phrase -- “of
eight...”. The diagram does not show the grammatical features, which are also recovered.

of-pre pP REP

a-maxi mum-ofD EICTIC

ei ghtN U MERATIV E

al pha-numeri cEP ITH ET

charact erTH IN G

uni t -7P PH EA D

uni t -6

a-detD EICTIC

us er-pass w ordT H IN G
uni t 2559S U BJECT

a-detD EICTIC

us er-pass w ordT H IN G
uni t 2559

A G EN T

be-auxF IN ITE be-aux

P RED

be-aux

TEN S E

a-det

D EICTIC

charact erTH IN Guni t -4CLA S S IF IER

s tr i ngTH IN G

consi s t -verbN O N F IN ITE consi s t -verb

TEN S E

consi s t -verb

P RE D

CIRCU MS TA N CE-1

uni t -5Q U A LIF IER

uni t 2557O BJ ECT

a-det

D EICTIC

charact erTH IN Guni t -4CLA S S IF IER

s tr i ngTH IN G

consi s t -verbN O N F IN ITE consi s t -verb

TEN S E

consi s t -verb

P RE D

CIRCU MS TA N CE-1

uni t -5Q U A LIF IER

uni t 2557

ME D IU M

peri odP U N CT

t op

a-det

Figure 10.23: The Parse-Tree for “A user-password is a character string consisting
of a maximum of eight alpha-numeric characters” (computer-drawn).

5.5 Comparison With Other Systemic Parsers
There have been seven prior approaches to Systemic parsing: Winograd (1972),

McCord (1977), Cummings & Regina (1985), Kasper (1988a, 1988b, 1989),
O'Donoghue (1991a, 1991b), Bateman et al. (1992), and Weerasinghe & Fawcett
(1993).

Most of these parsers used grammars too small to produce the complexity problems
faced by larger grammars, e.g., Winograd (1972), McCord (1977), Cummings & Regina
(1985), and Bateman et al. (1992). The first three of these parsers also used reduced
forms of the Systemic formalism.

Two of the parsers rely on the input sentence being pre-parsed using a grammar from
another formalism, e.g., Kasper’s parser initially parses the sentence using a phrase-
structure grammar (PSG). This PSG forms a context-free backbone to the Systemic
grammar. A set of constraints are then applied which builds up the Systemic
representation corresponding to the PSG analysis. Bateman et al. (1992) also depends on
a pre-analysis, using a HPSG parser, which produces a skeletal function structure for the

The WAG Analyser 137

sentence.7 A unification system (Typed Feature Structures (TFS) - see Emele & Zajac
1990) then uses the Systemic resources to produce a full lexico-grammatical and
ideational analysis of the clause.8

O'Donoghue (1991a, 1991b) and Weerasinghe & Fawcett (1993) both use Fawcett’s
Systemic formalism (Fawcett et al. 1992), which offers less parsing complexity than the
Hallidayan formalism (used by WAG). Fawcett divides his analyses into semantic
representations (the feature selections for each unit) and the syntactic representation (a
structure involving roles and syntactic classes, but no features). Parsing concerns the
construction of the syntactic representation, and both the parsers for this formalism
perform the syntactic analysis in isolation from the system networks. Since each unit in
the syntactic representation involves only a single class, rather than a collection of
features, the parsing task is simplified significantly.

Weerasinghe & Fawcett (1993) further simplifies the formalism by assuming that each
unit fills a single functional role (e.g., no conflation), with one exception, the O element
(the Finite in Hallidayan terms), which seems to be handled specially. They thus avoid
the second major cause of complexity in Systemic parsing -- functional layering.

O'Donoghue (1991a) comes closest to the WAG parser, in that he attempts to
automatically re-compile the Systemic grammar into a form more oriented to parsing.
However, his parsing resources are not compiled from the grammar itself. Instead, he
uses the Genesys generation system (Fawcett & Tucker 1990) to generate a large number
of random sentences.9 A parsing-grammar is produced by analysing this corpus. He calls
the grammar Vertical-Strip Grammar (VSG), and he describes it as follows:

“In a VSG, rather than considering the horizontal slices through the tree -- the phrases
-- we consider vertical slices. The vertical slices are called strips, hence the name
VSG. A strip is a vertical path of nodes in the tree starting at the root and ending at a
lexical node.” (p4).

One problem with this approach is that his compiled grammar is not equivalent to the
Systemic grammar from which it is derived, but will only parse a (large) subset of the
sentences which that grammar allows.

His approach also suffers from a high level of complexity. To parse, each lexeme is
assigned the set of strips for which it can fill the leaf node. Working left-to-right through
the input string, the parser attempts to unify the potential strips for each lexeme. Assume
we have 10 possible strips per lexeme (a small estimate), and have 8 words in a sentence
(again small). The possible combinations of these strips (worst case) is 10 x10 x 10 x 10
x 10 x10 x 10 x 10, or 108, which is quite large. Constraints (e.g., ordering constraints),
and heuristics can reduce the actual number of strip combinations, but this method would
be unusable for a grammar of reasonable coverage.

5.6 Summary
My research has resulted in a parsing system which parses using a large systemic

grammar, without pre-parsing with a non-Systemic grammar. The parser uses the
Hallidayan formalism, which is the offers more parsing complexity than the Fawcett
formalism. The WAG parser is the first parser to fit these conditions.

7In Bateman et al. (1992), the starting structure is produced by hand rather than by the HPSG parser. The
HPSG pre-parser was added later (Bateman, personal communication).

8Only those resources needed to parse Kim ate every cookie were included. These resources included lexico-
grammatical and ideational resources; and declarativised chooser-inquiries.

9A cut-down version of the grammar is used, including around 450 systems; and 500 realisation rules.

The WAG Analyser 138

The major factor which makes this possible is the re-representation of the Systemic
grammar in a form more suitable for bottom-up parsing. To summarise the preparation of
the parsing-grammar, the following steps were followed:

• This grammar is reduced in size, by applying register-restrictions, leaving a less
complex grammar, but a grammar which still handles the bulk of the phenomena
in the target texts. This is not a necessary phase -- when using WAG’s Systemic
grammar, which is less complex, register-restriction does not need to be applied.

• The grammar is then re-compiled to produce the parsing-grammar -- the partial-
structures used in parsing, as described in section 4 of this chapter. For the Nigel
grammar, this process takes approximately 2 minutes using Sun Common Lisp
on a Sun Sparc II.

• The parsing-grammar is then used to parse sentences.

The type of re-representation is important. The re-representation I have developed
allows efficient parsing, because it provides the answer to two questions which a bottom-
up Systemic parser asks:

• What element can come next;

• What is the function-potential of a given unit;

The WAG parsing-grammar is automatically compiled. If this was not the case, then
the parsing-grammar would need to be adjusted whenever the generation grammar is
adjusted -- the usability of the system is lessened. Also, the compiled grammar is
equivalent to the source-resources: capable of recognising any structure which the
grammar and lexicon allow, and rejecting any analysis which the resources do not allow.
This is not however true for O’Donoghue’s VSG resource.

Other important features of the WAG parsing-grammar are:

• No cover-grammar is required for parsing;

• The formalism of the grammar (before re-compilation) is not simplified to make
the parsing task easier: the theory should not be sacrificed for the sake of the
application.

• The grammar is represented declaratively, not procedurally as in Winograd's
approach. This means that the grammar can be modified - or completely replaced
- without re-programming the system.

The WAG parser is able to handle grammars of a reasonable size, while still producing
a result in a reasonable time. For instance, using a version of the Nigel grammar with 500
clause and group-rank features, the parser analysed the sentence “A user-password is a
character string consisting of a maximum of eight alpha-numeric characters.” in 15
seconds (using Sun Common Lisp on a Sun Sparc II). With the WAG grammar, which
is less complex, the same sentence is parsed in under two seconds. These times compare
favourably to other Systemic parsers, using grammars of similar coverage and
complexity. This time is however slow compared to context-free parsers, but the
Systemic formalism offers a lot more power than context-free grammars.

6. Micro-Semantic Analysis

I have so far described how a sentence can be analysed lexico-grammatically. The next
stage of processing produces a micro-semantic analysis from the lexico-grammatical
analysis (see figure 10.24). Lexico-grammatical analysis may produce a number of
analyses, but I will assume for the following discussion that only one of these analyses is
selected for semantic analysis.

The WAG Analyser 139

 The micro-semantic analyser draws on three resource-modules:

• The Lexicon: providing the ideational features for each lexical-item in the
parse-tree;

• Selection Constraints on Grammatical Features: providing the
ideational, interactional and textual meaning encoded in each grammatical feature;

• Micro-Semantic Resources: used to test whether semantic constraints are
mutually compatible.

6.1 Information Flow
Chapter 7 introduced three information-flow architectures: staged, interleaved and

integrated. These architectures can be characterised in relation to micro-semantic analysis
as follows:

Staged Analysis: lexico-grammatical analysis is completed before micro-semantic
analysis is started.

Interleaved Analysis: the lexico-grammatical analyser and the micro-semantic
analyser alternate construction, passing control between each other as required.

Integrated Analysis: as with interleaved analysis, lexico-grammatical analysis and
micro-semantic analysis are intermixed. However, a single processor is used,
which does not distinguish between the two representations.

In WAG, I have followed a staged approach, performing semantic analysis only after
lexico-grammatical analysis is complete. My main reason for choosing this approach is
that lexico-grammatical analysis is relatively cheap compared to the computation
performed in applying semantic constraints (semantic constraints contain a high degree of
disjunction and negation). By completing the grammatical analysis before applying
semantic constraints, alternative readings at the phrase or word level may be eliminated
on purely syntactic grounds. For instance, in "the orange cat sat on the mat", the
interpretation of “the orange" as an NP is eliminated syntactically: semantic analysis of
this unit does not need to be considered at all. Staged architectures are also easiest to
implement, since they assume an autonomy of levels.

There are arguments, however, for an interleaved or integrated approach. As each
lexico-grammatical unit is completed (word, phrase or clause), a semantic analysis of that
unit can be performed. Grammatical ambiguity can be resolved as it is discovered. For
instance, the grammar and lexicon allows two readings of "the orange seller" - a person
who sells orangesnoun, or a seller who happens to be coloured orangeadj. Using the

Lexico-Grammat ical
Representat ion

Micro-Semant ic
Analyser

Micro-Semant ic
Representat ion

Lexicon

Semantic-
Grammar
Map pin g

Micro-
Semantics

Figure 10.24: The Micro-Semantic Analysis Stage

The WAG Analyser 140

ideational resources, it could be discovered that people come in shades of red, yellow,
pink, black, white and brown, but never orange. The semantics could thus reject the
adjectival analysis without seeing the rest of the sentence.10

6.2 Control Strategy
In micro-semantic analysis, the lexico-grammatical representation is the source, and

the micro-semantic representation is the target. Since the WAG resource model associates
the interstratal constraints with grammatical features (see chapter 6), it is easiest to use a
source-driven strategy for semantic analysis: the lexico-grammatical representation drives
the analysis. Each unit of the parse-tree is taken in turn, and the selection-conditions of its
features are asserted. If the unit is at word-rank, then the analyser recovers the word’s
ideational features from the lexicon, and assigns them to the word’s Referent. This
process is described in more detail below.

A target-driven control-strategy could also have been used -- traversing the system
networks of the micro-semantics, and choosing features as appropriate for the given
lexico-grammatical input. Traversal needs to be repeated for each unit of the semantic
structure, e.g., we might first traverse the speech-act network to construct the speech-act,
then traverse the ideational network for each element of the proposition. Such an
approach mirrors the way in which most Systemic generators operate (e.g., WAG,
Penman -- see chapter 11), except that it is the semantic networks which are traversed
rather than the lexico-grammatical network. I have not followed this approach, since the
inter-stratal mapping constraints are indexed in terms of lexico-grammatical features, and
it would be difficult to re-index these resources in terms of semantic features.

6.3 The Micro-Semantic Analysis Process
The lexico-grammatical analysis of “Is Mary coming tomorrow?” would produce the

representation shown in figure 10.25. I will describe how the micro-semantic analysis is
derived from this analysis.

Is Mary coming tomorrow

[clause:modal:indicative:interrogative:yes-no:temporally-located]

Finite/
Prog

Subject Pred/
ProgC

Circumstance

[nominal-group:proper-group] [adverbial-group]

Head Head

[be-aux] [proper-noun] [lexverb: ing-verb] [adverb]

Figure 10.25: A Lexico-Grammatical Representation

Each unit of the parse-tree is mapped in turn, using the information in that unit to build
up the semantic representation. A bottom-up strategy is used, mapping first word-rank
units, then their parent-units.

10Although note that contexts can be found for almost any combination of quality and thing. Semantic
filtering should thus be seen as a means of eliminating unlikely readings, but should not be depended on if one
desires to accurately recognise unlikely readings when they are intended..

The WAG Analyser 141

6.3.1 Mapping of Word-Rank Units
The first step in mapping involves asserting the semantics for each lexical-item: the

ideational features of each lexical-item are retrieved from the lexicon, and assigned to the
unit’s Referent.11 The lexicon entry for the word “Mary” is shown below:

(def-lexical-item

 :name mary1

 :spelling "Mary"

 :grammatical-features (word noun proper-noun not-determiner-required)

 :semantic-features (thing conscious 3d-object human female))

To map the grammatical unit which is expressed by “Mary”, we first provide it with a
Referent role. The filler of this role is then provided with the features taken from the
:semantic-features slot of the lexical-item: (:and thing conscious 3d-object human female).
This process is repeated for each word-rank unit.

6.3.2 Mapping Grammatical Units
After the word-rank items are mapped, the units higher in the parse-tree are mapped.

For each of these units, the unit’s features are used to drive the mapping. The selection-
constraint associated with each of the unit’s features are asserted. The constraint for the
feature nominal-group is shown below:

 (def-constraint nominal-group

 (:and (:type Referent (:or thing process ideational-relation))

 (:same Referent Thing.Referent)))

In figure 10.25, this constraint would be applied to the Subject, since it has the feature
nominal-group in its selection-expression. The constraint tells us two things: firstly, that
the Referent of the Subject will be either a thing, process, or ideational-relation. The
second constraint tells us that the Referent of the Subject is the same as the Referent of its
Head role (passing the Referent role between the parent and its Head). Since the Referent
of the Head is already known from the lexical mapping, the Subject’s Referent is equated
with that unit.

Some constraints, like that for the nominal-group, reflect ideational meaning, but
others supply information about the interactional and textual meaning, as shown below:

 (def-constraint wh-agent

 (:and (:type *Speech-Act* elicit)

 (:same Agent.Referent *Speech-Act*.Required)))

 (def-constraint possessive-deixis

 (:and (:relevant Referent.Owner)

 (:same Referent.Owner Deictic.Referent)))

6.3.3 Micro-Semantic Representation
The information from the selection-constraints and the lexicon weaves together,

building up a micro-semantic representation for the sentence. This representation contains
ideational, interactional and textual information. Figure 10.26 shows a computer-
generated graph of the speech-act structure resulting from the micro-semantic analysis of

11Some closed-class lexical items do not have associated semantic features, since their semantics is already
associated with the grammatical features which determine the lexical item, e.g., determiners, intensifiers,
auxiliary verbs, etc. Some closed-class items are not totally determined by the syntax, for instance, the gender
of pronouns, in which case their semantics does need to be recovered from the lexicon.

The WAG Analyser 142

the sentence “John hit Mary”. The semantic features of each unit are also recovered, but
not shown in the example. Textual information is also not shown.

Figure 10.26 Micro-Semantic Analysis of “John shot Mary.”

6.3.4 Evaluation
The WAG system is successful in that it produces a micro-semantic analysis of an

input sentence. However, this success needs to be moderated, because the process is not
greatly robust. A simple sentence was used in figure 10.26, because the level of
complexity involved in the semantics-grammar mapping is rather high. A large number of
the mapping constraints contain disjunction, and the assertion of these results in
combinatorial explosion. I am continuing research into this process, hoping to reduce the
level of complexity.

7. Summary & Conclusions

This chapter has outlined the four stages of processing in the WAG analyser:

• Graphological Analysis;

• Lexical Analysis;

• Grammatical Analysis (Parsing);

• Micro-Semantic Analysis.

I have provided details of each of these stages, showing how each stage builds on the
results of the stage before.

This is the first Systemic parser which parses with the full Hallidayan formalism
without use of a non-systemic formalism to segment the sentence. There have been
various systems which parse using a simpler Systemic formalism (Winograd 1972;
McCord 1977; Cummings & Regina 1985; Weerasinghe & Fawcett 1993), and others
which rely on a non-Systemic formalism to segment the input string (Kasper (1988a,
1988b, 1989): Phrase Structure Grammar; O'Donoghue (1991a, 1991b): his `Vertical
Strip Grammar'; and Bateman et al. (1992): Head-driven Phrase Structure Grammar).

The important characteristics of the WAG parser were described in section 5.4 above.
Probably the most important contribution of this chapter is the discussion of compiling
out a parsing-grammar, and the composition of this resource. This re-compilation stage is
necessary to produce a parser capable of handling large Systemic grammars, without a
cover grammar.

The WAG Analyser 143

Future work will attempt to increase this parsing speed. Four directions are being
followed:

a) Finding alternative re-representations of the Systemic resources which facilitate
the parsing process;

b) Research into the automatic extraction of a ‘context-free’ backbone (or a grammar
closer to context-free) from the Systemic resources;

c) Moving more processing to the pre-compilation stage;

d) Reducing the complexity of the description without reducing its coverage.

