
Chapter 11

Sentence Generation

1. What is Sentence Generation?

The aim of a typical text generation system is to produce a text which satisfies some
set of pre-stated goals. Such systems are provided with a knowledge base -- which
contains information to be expressed -- and a set of goals. The system then organises this
information into sentence-length chunks, realises these chunks as sentences, and prints or
speaks the text. Figure 11.1 shows a typical application of a text generation system: a
weather satellite beams down weather information to a receiver dish, which passes the
information to a computer. The computer draws upon this knowledge base (and perhaps
other sources) to generate a weather report.

Weather Data
from Satelite

Today's Weather
To d ay 's weath er sh o u ld b e mild ,
with o ccas io n al sh o wers in th e late
aftern o o n .
. .
. .

Figure 11.1: A Weather Report Generation System

A possible architecture for this text generation process is shown in figure 11.2, and
the three stages (which can be inter-mixed) are described below.

144

Sentence Generation 145

Ideation
Base

Discourse
Goals

Content Selection

Text Organisation

Speech/Text

Realisation

Figure 11.2: From Knowledge-base to Text/Speech

1) Content Selection: Determining which of the facts in the ideational
(knowledge) base need to be expressed to best achieve the discourse goals.

2) Text Organisation: Splitting the selected content into segments realisable as
single sentences (micro-semantic specifications), and ordering these segments
into a sequence which best achieves the discourse goals. Different discourse
goals may result in different orderings.

3) Realisation: realising these segments as sentences.

WAG provides only the sentence realisation component of a multi-sentential text
generation system. I will thus focus on how micro-semantic specifications are realised as
graphological strings1. This chapter provides firstly a general background to sentence
generation (general issues), and then a detailed description of the WAG generator.

Text generation is a relative new-comer to the NLP field: while some papers were
published in the late sixties and seventies (e.g., Friedman 1969; Simmons & Slocum
1972), generation did not really take off until the eighties. As a field, it has been relatively
small compared to the analysis field. However, the focus on generation is growing, since
it is important for machine translation and natural language interfaces.

Sentence generation using Systemic grammar have been prominent throughout the
development of text generation, including Proteus (Davey, 1974/1978), Penman (Mann
1983a; Mann & Matthiessen 1985) and Slang (Patten 1986, 1988). In recent years,
several other Systemic generation systems have been implemented, including Genesys
(Fawcett & Tucker 1990) and Horace (Cross 1991).

Important non-Systemic sentence generators include Mumble (McDonald 1980; Meteer
et al. 1987); KAMP (Appelt 1985); TAG (Joshi & Vijay-shankar 1985); that of Danlos
(Danlos 1984); and FUF (Elhadad 1991).

1As stated in chapter 2, we are focusing on graphological rather than speech output. Speech can be produced
by the WAG system, but this is through a text-to-speech module connected to the program.

Sentence Generation 146

2. Some Issues in Sentence Generation

This section discusses some methodological issues in the construction of a sentence
generation system.

2.1 Flow of Information
In chapter 7, I discussed three information-flow architectures: conduit (staged), inter-

leaved, and integrated.

The popularity of the interleaved approach is growing in the generation area, since
decisions about what to say (content selection module) depend on the choice of how to
say (realisation module). For example, when expressing a process, the decision to
include the Actor and Actee will depend on whether a clause or nominal-group is used to
express the process -- a nominal expression including both Actor and Actee is more
awkward, and thus less likely, e.g., the buying of the book by Mary.

Integrated architectures are also gaining popularity. As formalisms for representing
natural language resources become more robust, many systems are now using the same
language to represent all levels of representation: semantic structures, text-structures, and
lexico-grammar. Loom, for instance, can be used to represent rhetorical structure trees
(Hovy et al. 1992), ideational structures (Bateman et al. 1990), and lexico-grammatical
structures (Kasper 1989). Once all the resources are in the same formalism, the processor
can ignore the stratal division of the resources, and perform one operation only --
propagating the logical implications of the input, thus deriving the output structure.

2.2 Control Strategies
In chapter 7, I proposed that most NLP can be viewed as a process of translating

between strata: building a target representation based on a source representation. Control
strategies handle the mapping between any two representational levels. In a tri-stratal
system, we need two control strategies (assuming a conduit architecture): one between
micro-semantics and lexico-grammar; and one between lexico-grammar and graphology.

2.2.1 Between Micro-Semantics and Lexico-Grammar
To produce a lexico-grammatical representation from a micro-semantic representation,

we can use either a source-driven (data-directed), or a target-driven (goal-directed)
strategy:

1) Source-Driven: each feature of the micro-semantic specification has associated
lexico-grammatical constraints (the lexico-grammatical consequences of the
semantic feature). To build a lexico-grammatical structure, we take each feature
of the micro-semantic specification in turn, and apply its lexico-grammatical
realisations. This is repeated for each unit in the structure. In this way we build
up a lexico-grammatical structure.

2) Target-Driven: the inter-stratal mapping constraints are represented as semantic
constraints on lexico-grammatical features. To build a lexico-grammatical
structure that encodes the micro-semantic input, we traverse the lexico-
grammatical network, choosing a feature in each system whose semantic
constraint matches the micro-semantic specification. Basically, we build a lexico-
grammatical structure in the grammar’s own terms, although the choices are
constrained by the semantics.

Most of the Systemic generation systems use the target-driven approach (e.g.,
Penman, Proteus, Genesys). The following quote from Matthiessen (1985) demonstrates
this for the Penman system:

Sentence Generation 147

"In Nigel ... initiative comes from the grammar, the general control of what happens
comes from the entry conditions of the systems. It is not the case that the semantic
stratum has its own control, does its work and presents the results to the grammar
for realisation. Instead, it is controlled by the entry conditions of the systems."

Patten’s SLANG system is the exception: grammatical features are preselected as the
realisations of the semantic features:

“Features at the semantic stratum may have realisation rules which preselect
grammatical features. Similarly, grammatical features may preselect features from
the phonological/orthographic stratum.” (1988, p44).

We can also distinguish between resource-driven and representation-driven systems: a
resource-driven system uses the resources to select the next rule or constraint to apply,
while a representation-driven system uses the information in the representation to control
the structure-building. Penman uses a mixture of both -- firstly, it is representation-driven
to the extent that the unit-of-focus -- the element being expanded -- is chosen in reference
to the lexico-grammatical representation: we start with the top element (the clause), and
successively expand elements down towards the leaves of the tree. This represents a top-
down, breadth-first generation strategy. However, within each unit, the construction is
resource-driven: the system network is used to control the construction of each unit’s
internal structure. The unit is constructed by a forward-traversal through the network,
asserting the realisations of each feature selected. In simpler terms, the node-selection
strategy is representation-driven, and the rule-selection strategy is resource-driven.

The WAG generator follows the Penman tradition, using the lexico-grammar to
control the generation, expanding units in a top-down, breadth-first manner. Each unit is
constructed as a result of a traversal of the system network. Section 4.3 below will
discuss the strategy in more detail.

2.2.2 Between Lexico-grammar and Graphology
While Penman and WAG both use a target-driven control strategy between micro-

semantic and lexico-grammar, in the graphological construction, control is source-driven.
The source, in this case, is the lexico-grammatical structure. The process finds the leaves
of this structure (word-rank elements), and recovers the associated lexical-items. Using
these items, and inflectional features, the appropriate graphological-forms are generated,
and printed (with formatting, e.g., capitalisation, spacing, etc.). Graphological
generation in the WAG system will be discussed more fully in section 4.5 below.

2.3 Deterministic vs. Non-Deterministic Generation
In chapter 9, I described the issue of determinism in parsing - whether the parser

resolves each choice before continuing (deterministic parsing), or whether it explores
each alternative (non-deterministic parsing).

These same possibilities apply for generation also. We may reach a point in the
generation process where two alternative means of expressing the semantics both seem
valid. Often, each of the choices will lead to appropriately generated sentences, the
choices representing alternative means of realising the meaning.2 In other cases,
however, some choices may lead to a dead-end in the generation process -- no
appropriate realisation is possible. This has been called a generation gap (Meteer 1990).

2In a fully-constrained system, all differences in form would be linked back to differences in meaning.
However, at present, it is difficult to assign meaning differences to all form differences, e.g., the semantic
difference between “I said that he was coming” and “I said he was coming”. Such differences are defaulted in the
WAG system.

Sentence Generation 148

Generation gaps occur because choices are often dependent on each other -- if we
make the wrong choice at one point, there may be no valid alternatives at a later choice-
point. For instance, Meteer (1990, p63) gives an example of the generation of a process
involving someone deciding something important. At one point in the generation, we face
a choice between congruent realisation -- He decided -- or an incongruent realisation --
He made a decision. Both choices seem equally valid. However, the incongruent choice
allows the ‘important’ characteristic to be expressed -- He made an important decision --
while the congruent choice does not -- *He decided importantly.

When the decisions on which a particular choice depends are not made before the
choice is reached, then we have a determination problem -- the choice cannot be resolved.
I will discuss below the two types of solution to this problem -- forcing a decision
(deterministic generation), and following all alternatives (non-deterministic generation).

2.3.1 Non-Deterministic Generation
A non-deterministic generator doesn’t make a definite decision between alternatives,

but either chooses one tentatively, or follows all alternatives simultaneously. The same
strategies that are available for non-deterministic parsing (see chapter 9) are also available
for generation:

• Simultaneous Generation: all options are carried forward at the same time.
This option includes ‘chart generation’, along the lines of chart parsing (cf.
Haruno et al. 1993).

• Backtracking Generation: at each choice-point, an arbitrary decision is made.
When a generation dead-end is reached, the generator backtracks to the last
choice-point, makes a different choice, and proceeds from there. At one stage I
modified the WAG generator to allow backtracking. However, this generation
was very inefficient due to the large size of the backtracking stack which needed
to be saved. For this reason I have switched to deterministic generation3.

2.3.2 Deterministic Generation
In deterministic generation, the process resolves choices as they are reached. A

problem for this approach is that there is not always sufficient information to make the
decision available.

Matthiessen (1988a) points out one problem-case for non-deterministic Systemic
generation: “How is the situation to be avoided where a chooser is entered before all the
hub associations needed are in place?” (p775). In terms of WAG, this problem is stated
as follows: the generator wishes to test a feature selection-constraint which includes a
reference to the Referent role of some unit. However, the filler of the Referent role has
not yet been established. The establishment of the Referent role is performed in some
other system, which has not yet been entered. The feature selection-constraint thus cannot
be tested.

This kind of problem is common in writing Systemic grammars of reasonable
complexity. For instance, when choosing between the features single-subject and plural-
subject (concerning Subject-Finite agreement), the selection-constraints refer to
Subject.Referent, but the Subject’s Referent role may not have been established yet. It is
established in a simultaneous system, where the Subject is conflated with either the
Agent, Medium or Beneficiary.

3A variation of this approach stores only the choice made at each decision point, and not the generation
environment. When generation fails, the process goes back to the beginning of the generation and re-creates
the structure, varying only the last choice. This approach has the advantage of far less storage space
requirements. However, the same structure-building work might be done over and over, meaning that this
approach will be slow if any degree of backtracking occurs. The approach is appropriate if the number of
backtracks is assumed to be very small, e.g., the first path is likely to succeed, but we allow for the possibility
of failure.

Sentence Generation 149

Nigel and WAG have avoided such non-deterministic problems, by careful writing of
the lexico-grammatical and interstratal resources. However, this is a case where the
resources are being shaped by the needs of the process, a practice which should be
avoided, if possible, since the resources lose their process-neutrality.

Matthiessen (1988a) proposed one solution which avoids the re-wiring of the
grammar. He proposes a least-commitment strategy -- whenever a grammatical choice
cannot be resolved, then we should make no commitment, but rather postpone the
decision until a later point. There are potentially other grammatical decisions which can be
made without waiting for this one (e.g., simultaneous systems). The system is pushed to
the end of the systems-to-be-resolved queue.

This is a good solution for some cases, since it doesn’t require any change to the
resources -- only the traversal algorithm is affected. However, the solution cannot be
used in two situations:

1) Inter-Dependency: there may be cases where two decisions depend on each
other. Each decision cannot be resolved until the other decision is resolved.

2) Referent resolved in more delicate system: sometimes the Referent is
resolved in a more delicate system, rather than in a simultaneous system. No
amount of delay will solve the problem.

We could write the resources to avoid these situations (while allowing cases which
could be solved using least-commitment). Alternatively, we could introduce more
complex processes which know how to obtain as needed the information required to
resolve the choices. I will not discuss this further here, except to say that the concept of
‘look-ahead’ from parsing could perhaps be applied profitably.

3. WAG’s Input Specification

This section and the next describe WAG’s sentence generation system. I start by
describing the input to the system and then describe the generation algorithm itself.

The input to the generation process is a micro-semantic representation4. Figure 11.3
shows a sample micro-semantic specification, from which the generator would produce:
“I’d like information on some panel beaters.". The distinct contributions of the three
meta-functions are separated by the grey boxes.

4WAG can also be set to generate without semantic constraint, by making random or default lexico-
grammatical selections, or by allowing a human to make these decisions.

Sentence Generation 150

Interactional
Specification

Ideational
Specification

Textual
Specification

(say dialog-5

 :is (:and initiate propose)
 :speaker (Caller :is male :number 1)

 :Hearer (Operator :is female :number 1)

 :proposition (P5 :is like
 :senser Caller
 :phenomenon (info :is (:and information
 generic-thing)
 :matter (pb :is panel-beater
 :number 2))
 :polarity (pol5 :is positive)

 :modality (mod5 :is (:and volitional conditional)))

 :theme Caller
 :relevant-entities (P5 info pol5 Caller pb)
 :recoverable-entities (Speaker Caller)
 :shared-entities nil
)

Figure 11.3: The Micro-Semantic Specification for
"I'd like information on some panel beaters."

“say” is the name of the lisp function which evaluates the micro-semantic
specification, and calls the generation process.

“dialog-5” is the name of this particular speech-act -- each speech-act is given a unique
identifier, its unit-id.

The :is field specifies the features of the unit. This is used both for the speech-act as a
whole, and for any unit in the ideational content. In this example, the speech-act is
provided with a feature-specification (:and initiate propose). The proposition is provided
with a single ideational feature: like. The feature-specification can be a single feature, or a
logical combination of features (using any combination of :and, :or or :not). One does not
need to specify features which are systemically implied, e.g., specifying propose is
equivalent to specifying (:and move speech-act negotiatory propose).

3.1 Roles of the Speech-Act
Most of the colon-marked fields in figure 11.3 specify the roles of the units, and their

filler. For example, the following specifies that the Speaker role is filled by an entity with
unit-id Caller, which is of type male.

:speaker (Caller :is male)

We can specify the filler of a role in two ways:

a) Unit-Id Only: We can refer to the unit using just an identifier, e.g., :Speaker
Caller. If an entity with this name has already been defined, then the Speaker role
will point to this entity. If no entity of this name has been defined, then a new
entity is defined and inserted into the knowledge-base.

b) Unit-Definition: If the role-filler has not been introduced before, we can define
the entity within the role-filler slot. For instance, :speaker (Caller :is male)
defines an instance Caller, declares the instance to be of type male, and makes the
Speaker role point to this entity. A unit-definition has the structure:

Sentence Generation 151

(<unit-id>

:is <feature-specification>

:role1 <unit-specification1>

:role2 <unit-specification2>

.....)

Units can also be defined separately from the ‘say’ form, for instance, by pre-loading
a knowledge-base (see section 3.2 below).

The possible roles of the speech-act are:

• Proposition: the ideational content of the speech-act -- a unit-specification;

• Speaker: the unit-specification of the speaking entity;

• Hearer: the unit-specification of the hearing entity;

• Required: for eliciting moves, the unit-id of the wh- element. This is a pointer
to the element of the ideational content which is being elicited;

• Elicited: for proposing moves in response to an elicitation, indicates which
element corresponds to the Required element in the elicitation. Fragmentary
responses may include just the elicited element.

3.2 Ideational Specification
One fundamental difference between WAG's input language, and that of Penman,

involves the relation between sentence specifications and the knowledge-base (KB). In
both systems, the KB is used to represent the world we are expressing, the entities of
interest, the processes they partake in, and the relations between these participants and
processes.

In Penman, the ideational component of a sentence plan is not part of the KB, but
rather a re-expression of the knowledge in a form closer to language. SPLs are
constructed with reference to the KB, but there is no necessary correspondence between
the form of the knowledge and the form of the SPL. This is important for Penman, since
SPLs are designed to work with a variety of different knowledge-base systems. Penman
users supply a function to construct SPLs from the knowledge-base. SPLs may also be
constructed by hand, without any knowledge-base being attached to the system at all.

3.2.1 Generating Sentences Directly from the Knowledge-Base
The WAG sentence generator, on the other hand, is designed to be used hand-in-hand

with its own KRS, so the two are more highly integrated. The standard form of a
sentence-specification does not itself contain a specification of ideational-structure, rather
it contains a pointer into the knowledge-base -- the filler of the :proposition role is usually
the unit-id of an entity already defined in the knowledge-base.5 The other fields of the
sentence-specification are used to tailor the expression of the indicated knowledge.

To summarise, a Penman-based text-generator needs to build an ideational structure
re-representing the content of the KB, which the realisation component then operates on,
rather than the KB itself, while a WAG-based text-generator just includes in the sentence-
plan a pointer into the KB, and the realisation component then refers directly to the KB to
generate a sentence.

To demonstrate WAG's approach, we show below the generation of some sentences
in two stages -- firstly, assertion of knowledge into the KB, and then the expression of
indicated sections of this KB. The following asserts some knowledge about John and

5As we will see below, we can actually supply an ideational specification in the :proposition slot, but this
should be seen as a short-hand form, allowing assertion of knowledge into the knowledge-base at the same time
as specifying a sentence.

Sentence Generation 152

Mary, about how Mary left a party because John arrived at the party. tell is a lisp macro
form used to assert knowledge into the KB.

 ; Participants

 (tell John :is male :name "John")

 (tell Mary :is female :name "Mary")

 (tell Party :is spatial)

 ;Processes

 (tell arrival

 :is motion-termination

 :Actor John

 :Destination Party)

 (tell leaving

 :is motion-initiation

 :Actor Mary

 :Origin Party)

 ;relation

 (tell causation

 :is causative-perspective

 :head arrival

 :dependent leaving)

Now we are ready to express this knowledge. The following sentence-specification
indicates that the speaker is proposing information, and that the head of this information
is the leaving process. It also indicates which of the entities in the KB are relevant for
expression (and are thus included if possible), and which are identifiable in context (and
can thus be referred to by name). The generation process, using this specification,
produces the sentence: Mary left because John arrived.

(say gramm-met1

 :is propose

 :proposition leaving

 :relevant-entities (John Mary arrival leaving causation)

 :identifiable-entities (John Mary))

=> Mary left because John arrived.

As we stated, this approach to sentence specification does not require the sentence-
specification to include any ideational-specification, except for a pointer into the KB. The
realisation operates directly on the KB, rather than on an embedded ideational
specification.

Different sentence-specifications can indicate different expressions of the same
information, including more or less detail, changing the speech-act, or changing the
textual status of various entities. The expression can also be altered by selecting a
different entity as the head of the utterance. For instance, the following sentence-
specification uses the cause relation as the head, producing a substantially different
sentence:

(say gramm-met2

 :is propose

 :proposition causation

 :relevant-entities (John Mary arrival leaving causation)

 :identifiable-entities (John Mary))

=> John's arrival caused Mary to leave.

Sentence Generation 153

3.2.2 Ideation Specified within Sentence Specifications
Sometimes it is more convenient to specify ideational content within the sentence

specification, as in Penman's SPLs. WAG allows this form of expression also: if the
filler of the :proposition field is an ideational specification rather than a unit-id, then the
specification is asserted into the KB, and generation proceeds from there. This approach
was exemplified in figure 11.3 above.

3.3 Textual Specification
The sentence-specification includes several fields which specify various textual

statuses of the entities in the knowledge-base:

3.3.1 Theme
This field specifies the unit-id of the ideational entity which is thematic in the sentence.

If a participant in a process, it will typically be made Subject of the sentence. If the
Theme plays a circumstantial role in the proposition, it is usually realised as a sentence
initial adjunct. WAG's treatment of Theme needs to be extended to handle the full range
of thematic phenomena.

3.3.2 Relevant-Entities
This field contains a list of the ideational entities which are in the relevance space (see

chapter 5), and are thus selected for expression. In the example in figure 11.3, five
entities are nominated as relevant:

:relevant-entities (P5 info pol5 Caller pb)

This field is not necessary when an explicit ideational specification is included in the
‘say’ form. In such cases, the generator assumes that all the entities included within the
specification are relevant, and no others.

However, when the :proposition slot contains only a pointer into the knowledge-base,
the :relevance field specifies which elements of the KB to express. See chapter 5 for an
example using the relevance space to select out successive chunks of a KB (there called a
macro-ideational structure).

3.3.3 Recoverable-Entities
This field contains a list of the ideational entities which are recoverable from context,

whether from the prior text, or from the immediate interactional context (e.g., the speaker
and hearer). See chapter 5 for detail.

3.3.4 Shared-Entities
This field contains a list of the ideational entities which the speaker wishes to indicate

as known by the listener, e.g., by using definite reference. See chapter 5 for details.

Sentence Generation 154

3.4 Additional Fields of the Input Specification
Some additional fields are allowed in the micro-semantic specification, extending the

expressive power of the input language.

3.4.1 Constraint
This :constraint field allows the user to assert structural information which cannot be

expressed by simply specifying features or roles of elements of the speech-act. For
instance, tense/aspect is specified in the WAG system by specifying the relative ordering
of three points of time (following Reichenbach 1947):

Speaking-Time: when the utterance is made;

Event-Time: when the event takes place;

Reference-Time: A reference point adopted by the speaker.

We can provide a :constraint field in the micro-semantic specification to express these
relations:

(say utterance-1

 :is (:and initiate propose)

 :proposition P1

 :speaker Caller

 :constraint (and (< Proposition.Event-time Reference-time)

 (= Speaking-time Reference-time)))

3.4.2 Preselect
This field allows the user to ‘preselect’ features of the lexico-grammatical structure.

Some grammatical decisions may not be semantically constrained, and this field allows
the user to specify which feature to choose, e.g.,

:preselect ((p3 indefinite-pronom-group))

The first element of a preselection specification (p3 in this example) is the unit-id of an
ideational unit, the second is a feature-specification which the grammatical realisate of the
ideational unit must have. This feature-specification must not conflict with the rest of the
constraints on that unit, meaning that it must be compatible with the usual lexico-
grammatical preselections, and also with the feature’s selection-constraint.

3.4.3 Prefer
While :preselect specifies features that particular grammatical units must have, :prefer

allows the user to specify feature defaults, e.g.,

:prefer (passive)

During the generation process, there is often more than one feature in a system
appropriate to express the semantic specification. This is true when no feature in the
system is preselected, and the selection-constraints on more than one feature are met. In
these cases, an arbitrary choice needs to be made. By placing a feature in the :prefer field,
the user can cause the preferred feature to be chosen in such cases.

Feature preferences can also be set globally using the *feature-preferences* variable.
See section 4.3.1 below. This variable is also used for semantic defaulting, as discussed
just below.

3.5 Simplifying the Micro-Semantic Specification
Hovy (1993) points out that as the input specification language gets more powerful,

the amount of information required in the input specification gets larger and more

Sentence Generation 155

complex. The Penman system uses a couple of methods to avoid the growing complexity
of the input specification. These have been adapted to use in WAG as follows.

3.5.1 Semantic Defaulting
When the input-specification leaves particular semantic systems unresolved, Penman

chooses a feature on a default basis. For instance, the following features are the default
when not stated in the input specification: Speech-function: statement; Tense: simple-
present; Polarity: positive; Modality: none.

WAG also uses feature defaults. A variable *feature-preferences* is defined, which
holds a list of the default (or preferred) features. Before generation begins, the processor
goes through each unit of the micro-semantic specification and ensures that, for those
systems with no preselected choice, the default feature is selected, if its selection-
constraint is met.

Defaulting is necessary since the WAG system uses a deterministic generation strategy
-- each grammatical choice must be resolvable as it is met (see section 2.5.1 above).
Grammatical choices will not be resolvable unless the semantic decisions they depend on
have already been resolved. WAG thus forces those semantic decisions which have not
been resolved by the input specification.

Below is shown the Say form from figure 11.3, this time in a reduced form relying on
defaults:

(say dialog-5

 :speaker Caller

 :proposition

 (P5 :is like

 :senser Caller

 :phenomenon (info :is (:and information generic-thing))

 :matter (pb :is panel-beater

 :number 2))

 :modality (mod5 :is (:and volitional conditional))))

3.5.2 Macros
Penman allows the user to define macros -- short forms in the input specification

which expand out to more extensive forms. For instance...
:tense present-continuous

...in an input specification is replaced with the following before processing begins:

 :speech-act-id

 (?sa / Speech-act

 :speaking-time-id (?st / time

 :time-in-relation-to-speaking-time-id ?st

 :time-in-relation-id (?st ?et ?st) ?et

 :precede-q (?st ?et) notprecedes))

 :event-time (?et / time

 :precede-q (?et ?st) notprecedes))

WAG does not use macros. To serve the same function, we can add features to the
networks which represent complex specifications. For instance, a system could be added
to the speech-act network, which could include features such as present-continuous, past-
perfect, etc., each feature being associated with realisations which would assert the
necessary structural constraint (see figure 11.4). These features can then be included in
the feature-specification of the speech-act, acting as a short-form for the associated
structural constraint.

Sentence Generation 156

simple-present
(:and (= Speaking-Time Reference-Time)
 (<= Reference-Time Proposition.Event-Time))

past-perfect

(:and (< Reference-Time Speaking-Time)
 (< Proposition.Event-Time Reference-Time))

present-perfect

speech-act

Figure 11.4: Adding Features as a Form of Macro

3.6 The Speaker and Hearer Roles
The Speaker and Hearer fields are presently used for two purposes:

• Pronominalisation: The Speaker and Hearer roles are used to test if
pronominalisation is appropriate: if the fillers of these roles are also part of the
proposition being expressed, then pronominalisation is called for, e.g., I, you.

• Voice Selection: WAG checks the gender feature of the Speaker to determine
which voice to use in Macintosh’s text-to-speech system.

Note that the attributes of the Speaker and Hearer do not need to be re-defined for each
sentence. We can pre-define the speech-participants as entities in the knowledge-base.
Each speech-act specification thence only needs to refer to the unit-id of the speaker and
hearer.

In theory, the Speaker and Hearer fields are available for user-modelling purposes:
lexico-grammatical choices can be constrained by reference to attributes specified in the
Speaker and Hearer roles (cf. Paris 1993; Bateman & Paris 1989b; Hovy 1988a). Since
the fillers of the Speaker and Hearer roles are ideational units, they can be extensively
specified, including their place of origin, social class, social roles, etc. Relations between
the speaker and hearer could also be specified, for instance, parent/child, or doctor/patient
relations. Lexico-grammatical decisions can be made by reference to this information:
tailoring the language to the speaker’s and hearer’s descriptions. This has not, however,
been done at present: while the implementation is set up to handle this tailoring, the
resources have not yet been appropriately constrained.

4. Stages in Systemic Sentence Generation

This section describes the algorithms for sentence generation used in the WAG
system. These algorithms are fairly identical to Penman’s at a gross level, but differ in the
way these steps are implemented. A list of the ways the WAG implementation improves
on the Penman system are given at the end of the chapter. Note that WAG doesn’t include
any code from Penman, it is a total re-write.

Sentence Generation 157

4.1 The General Algorithm
WAG’s sentence generation algorithm is shown in figure 11.5. Each of these steps

will be discussed below.
Micro-Semantic Specification

Pre-Processing of
Micro-Semantic Specification

Build Lexico-Grammatical
Structure

Select Appropriate
Lexical Items

Build Graphological String

Text

Figure 11.5: The Sentence Generation Algorithm

4.2 Initial Processing of the Input
Before generation begins, the input is processed. This processing involves three steps:

1. Assertion of the Micro-Semantic Specification into the KRS: the
input specification is ‘parsed’, analysing it in terms of the various roles and
fields, and this information is asserted into WAG’s knowledge-representation
system.

2. Deriving Implied Structure: the program derives any additional structural
information it can from the partial specification. For instance,
• Deriving feature information from asserted roles;
• Deriving additional roles from asserted features.

These steps are repeated for each element of the micro-semantic specification, in a
top-down manner, until all roles are processed.

3. Defaulting of Unspecified Choices: After the prior step, there will still be
systems which are unresolved. Some of these systems are defaulted. Only
systems containing features drawn upon in the interstratal mapping constraints
need to be defaulted -- others can be left unspecified. In those systems which are
defaulted, features are chosen arbitrarily,6 except where the user has expressed a
preference (see discussion on feature defaulting above).

The result of the input processing stage is what I term a fully-specified micro-semantic
form. ‘Fully-specified’ refers to the fact that -- in each unit of the micro-semantic
representation -- the features which are relevant for lexico-grammatical processing have
been specified. This is required for deterministic generation, as discussed above.

6If no user-default is specified, the program takes the last feature in a system. This is because many systems
have a no-realisation alternative, and Systemicists tend to place these features last. A more intelligent program
would automatically discover the no-realisation alternative.

Sentence Generation 158

4.3 Lexico-Grammatical Construction
The goal of the Lexico-Grammatical Construction stage is to build a lexico-

grammatical structure which encodes the micro-semantic input. Section 2 above
compared two different control strategies for lexico-grammatical construction: source-
driven and target-driven. The WAG system, in common with most Systemic generators,
is target-driven -- the construction is based on expanding the lexico-grammatical
representation (constrained by the micro-semantics), rather than by realising the micro-
semantic representation.

Figure 11.6 shows the basic algorithm behind lexico-grammatical construction in
WAG. It defines a top-down, breadth-first, left-to-right construction process (see chapter
9 for a description of these terms). In other words, we first build the structure of the top-
most unit (the clause or clause-complex), and then build the structure of each of the unit’s
constituents, and so on down to word-rank units. This type of generator can thus be
called a ‘rank-descent’ generator.

Push clause unit onto
empty stack

Pop next unit from
stack

Build Current Unit's
Immediate Structure

Push Constituents of Current
Unit onto Stack

succeed

succeed

succeed

succeed

fail End

Figure 11.6: WAG’s Lexico-Grammatical Construction Process

This algorithm uses a stack data-structure. A stack is a data-structure used for storing
items. It is basically a last-in, first-out queue. You ‘push’ an item onto the stack -- place
an item at the front of the queue. You can push other items on top of this. You can also
‘pop’ an item, meaning that you take the item from the top of the stack. See figure 11.7.

Unit

top-of-stack

push pop

 Stack

Unit

Unit

Figure 11.7: The Unit Stack

The stack is used to store the constituents-to-be-processed. The process starts off with
only one element on the stack -- the sentence unit. At this point, the information in this

Sentence Generation 159

unit is minimal, just a specification that the unit is a clause7, and a pointer to the Referent
(semantic content) that this clause-unit is expressing.

Processing then begins: the top element is ‘popped’ off the stack, the system network
is traversed to build up its feature-list, and the realisation statements associated with these
features are applied, thus building the immediate structure of the unit.

When the element’s immediate structure is complete, we then need to complete the
structure of each of its constituents. So we push each of these constituents onto the Unit-
Stack, and cycle back to the beginning of the process: pop the next unit off the stack,
process this, and so on.

We continue popping and processing units until there are no units left to process. This
occurs when all constituents of the sentence-tree have been fully specified. We thus go on
to the bubble labelled ‘End’ in figure 11.6. We are now ready to move onto the next stage
of the generation process -- lexical selection8.

4.3.1 Immediate-Structure Construction
I will now provide more detail about the immediate-structure building stage of the

generation process. Following sections will focus on two aspects of this stage --
forward-traversal and constituency ordering.

The construction within each unit of the target is resource-driven -- controlled by the
traversal through the system network (from left to right). In each system, the program
chooses a feature whose semantic constraints are compatible with the micro-semantic
input. The structural realisations of this feature are then asserted, and the process
advances to the next enterable system. When all enterable systems are processed at that
rank, the unit is complete. Figure 11.8 shows the algorithm for generating the immediate
structure of a unit. It is reasonably similar to the flowchart proposed by Matthiessen &
Bateman (1991, p106), but has been developed separately.

Set *w aiting -sys tems*
list to 'rank- system'

suc c e e d

suc c e e d

suc c e e d

f ai l

End

E nter N ext System

A dvance to N ext Featur e

Test Featur e A gains t
Pr eselect ions

O rder Consti tuents

f a i l E r ror

f ai l

T est Feature's Semantic
Constr aints

A dd N ew Systems to
w aiting- systems

Asser t Featur e's Realisations

suc c e e d

suc c e e d

f a il

suc c e e d

suc c e e d

Figure 11.8: The Immediate-Structure Building Algorithm

7The feature clause leads on to both clause-simplex and clause-complex.

Sentence Generation 160

A brief summary of each of these steps follows:

1. Set *Waiting-systems* list to ‘rank-system’: the variable *Waiting-
systems* contains the list of systems which are waiting for processing, i.e.,
those systems whose entry conditions are satisfied at the present point of
traversal, but which have not yet been 'entered' (no feature has been selected as
yet).

2. Enter next system: The next system from the *Waiting-systems* list is
retrieved, becoming the *current-system*. At this point, the features of the
system are ordered by various means.

a) Initial ordering: Internally, the features of a system are ordered as they
appear in the system definition. The user can set a variable *feature-selection-
mode* which will change this default ordering in two ways:

• Reverse-order: the list of features is reversed before further
processing. This is useful for sentence generation, since the last feature in a
system is usually the one with no realisation attached.

• Random-order: the list of features is jumbled.

b) Preferential ordering: The user can specify a list of ‘preferred features’ --
features that will be considered before any other features. These preferred
features are put at the front of the list resulting from (a) above.

3. Advance to next feature: the next feature from the system is selected. If there
are no more features in the system (no valid alternatives), then processing fails --
either the resources contain inconsistencies, or we have reached a generation gap.

4. Test feature against preselections: the feature is tested against the
preselections for this unit. If the feature is consistent with the preselections,
processing continues, else the process returns to (3) to try another feature from
the system.

5. Test feature’s semantic constraints: the feature’s selection constraint (see
chapter 6 on inter-stratal mapping) is tested, and if it is consistent, it is chosen,
otherwise the process goes back to try another feature from the system.

6. Assert feature realisations: the realisations of the feature are asserted, with
the exception for the :order and :partition rules, which are stored for later
application. These realisations are applied at the end of the traversal, when we
know which roles conflate, which are presumed, and which of the optional roles
were actually inserted. If the assertion of the realisations fails (the realisations are
inconsistent with grammatical information from other features), an error is
signalled. This should not happen as Systemic grammars should be so
constructed in a way that any legal combination of features is realisable.

7. Add new systems: The program checks for any systems which become
enterable with the addition of the chosen feature. These systems are added to the
Waiting-systems list. Penman and WAG both keep a list, for each feature, of
the entry-conditions which the feature appears in. Thus, after selecting a feature,
we do not need to check all systems to see if they have become enterable, but
only those on this list. Also, any systems which have already been entered are
automatically ignored.

8. Order constituents: When all systems have been processed, the sequence
rules (order and partition) are processed, placing the units in their surface
ordering. See section 4.3.3 below for more details.

8The lexical selection process could be performed intermixed with the lexico-grammatical construction. If
so, then the processor would then advance to graphological realisation.

Sentence Generation 161

4.3.2 Forward-Traversal Algorithms
I have outlined Systemic generation as forward-traversal through the system network.

If there were no simultaneous systems in a system network, traversal would be a simple
matter of selecting a series of features in a single path from root to leaf. However,
networks allow simultaneous systems, so the order in which systems are processed is not
totally determined. Simultaneous systems can be entered in any arbitrary order. This
gives rise to two alternative strategies for network traversal:

1) Depth-first: The systems which extend from the last selected feature are
processed before simultaneous systems. Traversal follows one branch of the
network to the leaves before exploring others. Depth-first traversal is achieved by
placing newly activated systems at the front of the *waiting-systems* list, so that
they will be processed first.

2) Breadth-first: Systems at the same systemic depth are processed before the
systems which depend on them. Breadth-first traversal is achieved by placing
newly activated systems at the end of the *waiting-systems* list, so that they will
be processed last. Systems which were already on the list represent simultaneous
systems, and they will be processed first.

The choice between these strategies doesn’t affect processing efficiency, since all
entered systems have to be processed anyway. The order of entry should not affect the
results of the generation process.

4.3.3 Sequencing of Constituents
This section describes the algorithm used to sequence grammatical constituents in the

WAG generator. It represents a very succinct method for sequencing units systemically.
Sequencing is applied after the traversal is complete, since it is only at this point that we
can be sure which of the elements marked as optional are actually included, and also
which functions conflate together.

The WAG formalism uses two sequence operators:

• order: indicates absolute ordering (adjacency), e.g., (:order A B C) indicates
function A immediately precedes function B, which immediately precedes
function C.

• partition: indicates relative ordering, e.g., (:partition A B) indicates function A
precedes function B, but not necessarily adjacently.

Optionality: Elements of a sequence rule can be optional (need not actually occur in
the final structure). Optional elements are designated by being parenthesised, e.g., (:order
Subject Finite (Negator)).

Front & End: The sequencing of a unit in relation to the front and end of the
grammatical unit can be indicated by inclusion of pseudo-functions 'Front' and 'End' in
the sequence rule, e.g., (:order Front Subject), (:order Punctuation End).

To exemplify the processing, I will assume a clause which, after all systems are
entered, has the following sequence rules:

Order: Punct ^ End;

Pred ^ Object;

Subject ^ Finite ^ (Negator)

Partition: (Modal) # (Perf) # (Prog) # (Pass) # Pred

Sentence Generation 162

1. Sequence Rule Preparation: The order and partition rules are standardised
through three steps:

a) Removal of optional elements: the order/partition rules may contain optional
elements. Any optional element which is not present in the structure is removed
from the rule. The sequence rules shown above simplify to those below:

Order: Punct ^ End;

Pred ^ Object;

Subject ^ Finite

Partition: Modal # Pred

b) Standardisation of Role-Labels: Each constituent may have multiple role
labels (due to conflation). Different rules may refer to one constituent using
different role labels, e.g., assuming that Finite and Modal are conflated, then the
final two sequence rules in the set from above contain references to one unit
using different role-names. The order/partition rules are standardised so that only
one role per role-bundle is used.

Order: Punct ^ End;

Pred ^ Object;

Subject ^ Finite

Partition: Finite # Pred

c) Splitting into two-element rules: Each sequencing of more than two
elements is split into a number of binary sequencers. The rules of this example
are all binary after the elimination of the optional elements, but this is not always
the case. For example:

 Finite # Prog # Pred => Finite # Prog; Prog # Pred

2. Processing of Sequence Rules
To merge the information contained in these sequence-rules, an ordering graph is used

-- a data-structure which represents the ordering between any pair of elements. The
sequencing rules are applied to the graph one at a time, as shown in the following
example.

a) Initial State: The units start out unordered in respect to each other, but ordered
in respect to the front (FRONT) and end (END) of the unit, as demonstrated in
figure 11.9(a). In these ordering graphs, a continuous line between roles
indicates adjacency, a line broken by a || indicates that other elements may
intercede (partitioned).

b) Order Cycle: Each order rule is applied in turn. The successive effect on the
order graph is shown in Figure 11.9(b-d).

c) Partition Cycle: Each partition rule is then applied. Figure 11.9(e) shows the
application of the one partition in this example.

d) Reading off the Sequencing: After all the sequence rules are applied, we can
read off the sequencing from the graph. In most cases, there is only one path
through the graph. However, in some situations, sequence is not totally
determined, and alternative orderings may be possible (for instance, the WAG
grammar does not totally determine the sequence of multiple Circumstances, or
nominal Qualifiers). In such cases, the process just takes the first ordering
alternative.

Sentence Generation 163

a) The initial state of the order graph

End

Subj

Pred

Fin

Punct

Object

Front

b) After applying Punct ^ End

Front EndPunct

Subj

Pred

Fin

Object

c) After applying Pred ^ Object

End

Subj

F inFront Punct

ObjectPred

d) After applying Subj ^ Fin

End

Subj

Front Punct

ObjectPred

Fin

e) After applying Fin # Pred

EndFront PunctObjectPredSubj Fin

Figure 11.9: Successive States of the Order Graph

4.4 Lexical Selection
In Penman’s lexical selection algorithm, semantic filtering is applied first: the

semantics provides the set of candidate lexemes which express the ideational type of the
referent. These candidates are then filtered grammatically, and one of the remaining
candidates is chosen:

"Abstractly, there are two ways in which sets of candidate lexical items are
constrained and denotational appropriateness is the first kind of constraint applied.
Then grammatical constraints -- such as the requirement that the lexical item be an
en-participle -- are used to filter the set of denotationally appropriate terms."
(Matthiessen 1985).

The WAG system filters on grammatical grounds first. As a general case, I believe that
the Penman approach (semantic filtering first) is best. However, for a variety of reasons,
lexical selection in WAG is quickest when grammatical filtering is performed first. This is
true particularly for closed-class lexical-items (pronouns, prepositions, conjunctives,
verbal-auxiliaries, etc.), of which most can be totally resolved through grammatical
selection only. Even for open class items, grammatical filtering seems to be quicker.

The Penman system associates each lexeme with a single ideational feature (or concept
in Penman's terms). The WAG system overcomes this limitation, allowing each lexeme
to be associated with a set of ideational features. For instance, to specify the semantics
for the word "woman", Penman would need to create an ideational feature woman, which
inherits from both female and adult.9 In the WAG system, we can specify that the

9It is not necessary to specify the feature human, since female in the Penman Upper Model inherits from
human.

Sentence Generation 164

lexeme's semantics is (:and female adult), avoiding the need to create a new concept for
each combination of features.

4.5 Text and Speech Output
The sentence generator can produce either text (a graphologically formatted sentence),

or speech output.

1. Text Output: The text output is derived from the lexico-grammatical structure
(including lexical items) constructed during the prior stages. The mappings
between lexico-grammatical and graphological form are not stated declaratively --
they are encoded in the lexico-grammar-to-text procedure. These resources will
eventually be declarativised. The graphological string is derived as follows:

a) the lexical items are extracted from the leaves of the lexico-grammatical tree,
in order of occurrence from left to right.

b) an appropriate graphological form is generated for each lexeme, given its
inflection feature.

c) the left-most graphological form is capitalised.

d) Spacing: a space character is placed between each graphological form. Some
punctuation symbols modify this rule:

No space before: . , ; ? ! ' " (close quotes)

No Space after: ' " (open quotes)

2. Speech Output: If the speech-output option is selected, the WAG system speaks
the generated sentence using the Macintosh Speech Manager (a text-to-speech
program). WAG will check the designated gender of the ‘Speaker’ role of the
input specification, and choose a voice appropriately.

5. Comparison With Penman

In building the generation component of WAG, I have borrowed strongly from
Penman’s general architecture. However, I have attempted to correct many of the short-
comings in the Penman system. Note that WAG uses none of Penman’s code.

5.1 Similarities to Penman
The areas in which WAG has borrowed from Penman are:

1) Grammar-driven control: WAG uses Penman’s grammar-driven control
strategy, in common with the majority of Systemic generators.

2) Traversal Algorithm: The WAG traversal algorithm is similar to Penman's,
although the choosing of features in a system is different in WAG - based on
evaluating feature selection conditions, rather than traversing a chooser-tree.

2) Upper Modelling: Penman's Upper Model is the basis of WAG's ideational
representation, although WAG's Upper Model is represented as a system
network, rather than as a LOOM inheritance network. WAG has also adopted
Penman's means of handling domain knowledge - subsuming domain concepts
under upper-model concepts rather than relating them directly to the lexico-
grammar (see chapter 3).

3) Resource Definition and Access: For reasons of resource-model
compatibility between Penman and Nigel, WAG accepts system definitions in
Penman's format, and can export to this format (although a modified format is

Sentence Generation 165

preferred for WAG). Many of WAG's resource-access functions (functions for
accessing the stored Systemic resources) are named identically to Penman's,
although the internal storage of the resources is different. This has been done for
code compatibility reasons.

5.2 Differences from Penman
WAG improves on Penman in several directions:

1. Input Specification: WAG’s micro-semantic specification form is not
dissimilar to Penman’s input form -- Sentence Plan Language (SPL) -- except for
several improvements, which were discussed in chapters 4 and 5. In summary,
these are:

a) Extended and linguistically-based speech-act network: the speech-
act network has been extended to handle a wider range of speech-acts. The
speech-act categories rest on a firm theoretical basis in the Berry-Martin
tradition.

b) Treatment of proposition as part of speech-act: The relation of
propositional content to speech-act was rather ad-hoc in Penman, where the
speech-act was tacked on to the proposition to be expressed. Speech-function
seems to have been added on as an afterthought to an originally declarative-
only system. In the WAG system, the relationship has been clarified, with the
propositional content being treated as a role of the speech-act to be expressed.

c) Generation directly from KB: WAG allows sentence-specifications to
include just a pointer into the KB, while Penman requires an ideational
structure to be specified within each sentence-specification.

d) Designation of Wh-element in elicitations: it is difficult to designate
the element which should be the wh-element of a question in Penman, the
user needs to directly specify the answer to an identification inquiry, a
process which involves some knowledge of the internal working of the
Penman system. WAG allows the user to designate the wh-element (the
Required element) in the input specification, in a simple, theoretically-based
manner.

e) Extended textual specification: WAG has extended the range of textual
specification possible in the input form. This includes the recoverability,
identifiability, and relevance of entities. To match these features in SPL, the
user needs to include inquiry preselections -- forced responses to Penman’s
inquiries -- a rather low-level approach.

f) Complex ideational feature specifications: In Penman, each ideational
unit can have only a single feature (e.g., ship), or at most a conjunction of
features. WAG allows the user to specify the type of semantic unit using any
logical combination of features, using conjunction, disjunction or negation.

Sentence Generation 166

2. Interstratal Mapping: Penman's chooser-inquiry interface has proven
problematic for two reasons:

a) The chooser-inquiry interface is partially procedural, and thus not re-usable
for analysis. The WAG system has replaced the chooser-inquiry interface
with a declarative mapping system (following Kasper's approach), used for
both analysis and generation.

b) When extending Penman's resources to generate new sentences, it is often
difficult to work out what input specification is necessary to get a particular
lexico-grammatical form. The main reason for this is the need to work on four
levels of representation:

• Upper-model concepts and structures

• Inquiry specifications

• Chooser Trees

• The System Network

The WAG system simplifies the mapping process by mapping directly from
grammatical features to upper-model concepts. It is thus easier to discover
what input specification is needed to produce a particular lexico-grammatical
structure.

3. Structure Building: WAG improves on Penman's structure building in several
ways:

a) Conciseness: The Penman code for lexico-grammatical construction is quite
long and involved, having been developed by several programmers over ten
years. Some parts are difficult to penetrate, even by those who maintain it.
The WAG system has the advantage of being designed rather than evolved,
and takes advantage of the progress made in Penman. It has also been
implemented by a single programmer, so is more highly integrated.

b) Sequencing: The Penman formalism system uses four sequencing operators
(order, partition, order-at-front, order-at-end). However, most ordering is
actually derived from a set of default ordering rules. These default orderings
are not part of the Systemic formalism, but rather an ad-hoc extension.
Penman's sequencing information is not sufficient for parsing, since the
resources provide mostly default ordering, rather than all possible orderings.

The WAG system has extended the sequencing formalism to allow optional
elements in sequence rules. All ordering in the WAG grammar is done
without the default ordering resource. The WAG grammar is thus suitable for
parsing as well as generation.

c) Proper handling of disjunctive preselections: Penman does not
handle preselections properly where the preselection includes some
disjunction. The WAG system corrects this problem.

d) Use of a generalised KRS: The Penman system has specialised code for
dealing with realisation rules. All of WAG's processing is based on top of
WAG's KRS, which is used for asserting realisation statements during
generation or parsing, for asserting or testing feature selection conditions, and
for asserting knowledge into the knowledge-base.

4. Lexical Selection: The Penman system associates each lexeme with a single
ideational concept. The WAG system overcomes this limitation, allowing each
lexeme to be associated with a set of ideational features.

5. Lexical network into system network: In Halliday's Systemic grammar,
lexical features are organised under the lexico-grammar system network - the

Sentence Generation 167

word-rank sub-network. Penman does not follow this approach.10 For
generation purposes, the lexical features are not organised in terms of a network,
and Penman cannot check on the inheritance relations between lexical features.
The features are organised into an inheritance network only for lexical acquisition
(see Penman Project 1989), and this information is organised in a Loom
inheritance network, rather than as part of the Nigel lexico-grammatical network.
The WAG system incorporates the lexical features into the lexico-grammatical
network, under the word feature. This resource is used in processing to test
compatibility of lexical features.

6. Single formalism for all levels: The WAG system uses the same
knowledge representation system for all structural representation, including the
internal representation of the micro-semantic input (speech-act and ideational
content) and lexico-grammatical form. Penman has two systems - Loom is used
to represent knowledge, and Penman provides its own internal knowledge
representation system for representing lexico-grammatical structures.

6. Conclusions

While the WAG generator has only been under development for a few years, and by a
single author, in many aspects it meets, and in some ways surpasses, the functionality
and power of the Penman system, as discussed above. It is also easier to use, having
been designed to be part of a Linguist’s Workbench -- a tool aimed at linguists without
programming skills.

The main advantage of the Penman system over the WAG system is the extensive
linguistic resources available. While the WAG system can work with the grammar and
lexicons of the Nigel resources, I have not yet connected these resources to the micro-
semantics, so micro-semantic generation using Nigel is not yet possible. The writing of
appropriate feature selection-constraints is a task for future development.

This chapter has also provided extended discussion on the internal workings of a
Systemic generator, for which there is scant literature (although see Patten 1985;
Matthiessen & Bateman 1991).

10John Bateman has a version of Penman which partially corrects this problem.

