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Abstract

Parsing with a large systemic grammar brings one
face-to-face with the problem of unification with dis-
junctive descriptions. This paper outlines some tech-
niques which we employed in a systemic parser to
reduce the average-case complexity of such unifica-
tion.

1 Introduction

Systemic grammar has been used in several text
generation systems, such as PENMAN (Mann
and Matthiessen 1985), PROTEUS (Davey, 1978),
SLANG (Patten, 1986), GENESYS (Fawcett and
Tucker 1990) and HORACE (Cross, 1991). Sys-
temics has proved useful in generation for several
reasons: the orientation of Systemics towards repre-
senting language as a system of choices, the strongly
semantic nature of the grammar, and the extensive
body of systemic work linking discourse patterns and
grammatical realisation (e.g., Halliday, 1985; Halli-
day and Hasan, 1976; Martin, 1992).

Parsing with systemic grammar has not, however,
been as successful. To date, there have been six
parsing systems using systemic grammar: Wino-
grad (1972), McCord (1977), Cummings and Regina
(1985), Kasper (1988a, 1988b, 1989), O’Donoghue
(1991a, 1991b) and Bateman et al. (1992). How-
ever, each of these systems has been limited in
some way, either resorting to a simplified formal-
ism (Winograd, Cummings, McCord), or augment-
ing the systemic analysis by initial segmentation of
the text using another grammar formalism (Kasper:
Phrase Structure Grammar; Bateman et al.: Head-
driven Phrase Structure Grammar; O’Donoghue: his
‘Vertical Strip Grammar’ (VSG)). There has not so
far been a parser that parses using the full systemic
formalism, without help from another formalism.

The reasons for this failure relate to those rea-
sons which favour generation. Firstly, the orienta-
tion of systemic grammar towards choice means that
the grammar is organised into a form full of disjunc-
tions, which leads to complexity problems in parsing.
Secondly, the strongly semantic content of systemic
grammars (including roles such as Actor, Process

and Circumstance in the grammar) leads to a struc-
tural richness which adds to the logical complexity
of the task.

One result of the work in Systemic generation
has been the availability of a large computational
generation grammar using the systemic formalism –
the Nigel grammar (Matthiessen and Mann, 1985,
Matthiessen and Bateman, 1992). As this resource
is available, it is desirable to use it for parsing. How-
ever, complexity problems have so far made this im-
possible, except by pre-parsing with another formal-
ism.

In the last few years, we have developed a parser
for Systemic grammar, particularly for use with the
Nigel grammar. The parser handles the full Systemic
formalism, and does not depend on another formal-
ism for segmentation. The parser uses a bottom-up,
breadth-first algorithm. A chart is used to handle
some of the non-determinism.

This paper focuses on some methods we have used
in the parser to reduce the complexity problems as-
sociated with using the Nigel grammar. In particu-
lar, we focus on the means used to make disjunctive
unification more efficient.

Section 2 discusses the problem of disjunctive ex-
pansion, and some means of making it more efficient
at a general level. Before becoming more specific,
the Systemic formalism is introduced (section 3).
Section 4 explores one method of avoiding complex-
ity – reducing the size of the disjunctive descrip-
tion by working with sub-descriptions rather than
the whole description. Section 5 presents three ways
of making expansion, when necessary, more efficient.
We conclude the paper with a brief summarisation
of our work.

2 Unification with Disjunctive
Descriptions

Parsing with a systemic grammar involves much uni-
fication of disjunctive descriptions. The usual way
to unify such is as follows:

1. Expand out the disjunctive descriptions to Dis-
junctive Normal Form (DNF) – a form with all



disjunction at the top level of the description –
a disjunction of non-disjunctive forms.

2. Unify each term of the first DNF form with each
term of the other.

DNF expansion of a description is however an ex-
pensive task – the process takes exponential time in
the worst case (Kasper and Rounds, 1986). Space is
also a problem – DNF expansion is a transformation
whereby a disjunctive description is replaced with a
set of descriptions each of which contains no dis-
junction. For a description containing a high level
of disjunction, the size of the DNF form can be ex-
cessive.

Space has not however been a problem in our pro-
cessing, but time has. Systemic parsing is very slow.
We thus focus on means for speeding up, or avoiding,
the unification process.

2.1 Avoiding Expansion

There have been proposals for unification without
DNF expansion. Karttunen, for instance, has pro-
posed an algorithm which “uses constraints on dis-
juncts which must be checked whenever the disjunct
is modified” (Kasper, 1987, p81). However, as noted
by Kasper (1987, p61), Karttunen’s unification al-
gorithm works only for a limited type of disjunc-
tive description, and not for general disjunction as
is needed in the present work.

Kasper has proposed a method of re-representing
disjunctive descriptions which in some cases avoids
the need for expansion. His approach separates a
disjunctive description into two parts – a definite
component (which contains no disjunction), and an
indefinite component (containing the disjunctive in-
formation of the description). A unification process
can first check whether the definite components of
two descriptions unify, and only proceeds to unify
the indefinite components if the definite components
unify successfully. The unification of the indefinites
is avoided if the unification of the definites fails.

2.2 Delaying disjunctive expansion until

necessary

The Kasper-Rounds form also allows us to delay ex-
pansion until a later time. When two descriptions
are unified, only the definite components need to be
checked for compatibility. The result of a Kasper-
Rounds unification contains the indefinite descrip-
tions from both descriptions without expansion. At
some point in the processing it may be necessary to
resolve the indefiniteness, and the disjunctive com-
ponents are then expanded. However, in many cases,
the definite component of the description may be-
come inconsistent before this is necessary, expansion
is thus avoided.

2.3 When expansion is necessary, expand
efficiently

If DNF-expansion is required, then it should be per-
formed as efficiently as possible. We here discuss
some methods to achieve this goal:

1. Reducing the disjunctiveness of the de-

scription: By reducing the extent of the de-
scription, we reduce the amount of disjunction
to be expanded, and thus speed up the expan-
sion process. We use two methods to reduce the
size of descriptions:

(a) Extracting descriptions for special-
purpose: we segment the grammar
description into sub-descriptions for par-
ticular purposes. We found that different
parsing processes drew upon only subsets
of the grammar. Rather than working
with the full grammar, sub-descriptions
tailored for particular purposes can be
compiled-out. These sub-descriptions
are less complex to expand than the full
description

(b) Register Specific Pruning: parts of the
grammar which are not expected to be
used in a particular set of target texts are
‘pruned-out’ before processing begins.

2. Expanding Disjunctions Efficiently: a dis-
junctive description may contain a number of
disjunctions. Ordering the expansion of these
disjunctions in particular ways can result in im-
proved expansion times:

(a) Multiplying together disjunctions with
high likelihood of inconsistency first, thus
reducing the number of terms which we
continue with.

(b) Spotting inconsistent unifications with
minimum of work e.g., checking for in-
consistencies between single terms before
checking for inconsistencies between com-
binations of terms.

(c) Using some form of structure sharing in the
expansion process: in the expansion pro-
cess, the same terms may be multiplied
together a number of times. A form of
structure-sharing, such as a parse chart,
can reduce the redundancy in the expan-
sion process.

2.4 Caching and precompilation: avoiding

repeating the same expansion.

The parser makes extensive use of caching – when
any expansion is calculated which is likely to be used
again, the result is stored away for later re-use.



Precompilation has also been a useful technique
to improve parsing efficiency. Precompilation is ba-
sically a pre-caching of all the values which might be
used in the parsing process. By performing most of
the DNF expansion of the grammar as a precompi-
lation step, we avoid doing that calculation during
the parsing of a sentence.

3 A Systemic Grammar

3.1 Type and Role Logic

Systemic grammar, in distinction to value-attribute
grammars, distinguishes type logic (the classes of
units) and role logic (the constituency and depen-
dency relations between units). The type logic is ex-
pressed in a network, called a system network . The
role logic is expressed as a set of constraints on the
types of the grammar.

3.2 System Networks

Systemic grammar (e.g., Halliday, 1985, Hudson,
1971, Matthiessen and Mann, 1985) uses an inher-
itance network to organise grammatical types (or
‘feature’ in Systemics1), and their structural con-
sequences. A Systemic inheritance network is called
a system network .

A system network is used to organise the co-
occurrence potential of grammatical types, showing
which types are mutually compatible, and which are
incompatible. It consists of a set of systems , which
are sets of mutually exclusive types. There is also
a covering relation between the types of a system,
meaning that if the entry condition of the system is
satisfied, then one of the types in the cover must be
selected.

Figure 1 shows a system network for a simple
grammar of English. It includes 11 systems, rep-
resenting various grammatical distinctions, for in-
stance, between clause and word, between transitive
and intransitive clauses, or between nominative and
accusative pronouns.

Each type inherits the properties of types to its
left in the network. Note that the system network
may be logically complex, since entry conditions (the
logical condition on a system) may consist of con-
junctions and disjunctions of types.

3.3 Structural Templates

Types of the system network are associated with
structural realisations – the structural consequence
of the type. Figure 2 shows the realisations of
the types in Figure 1. This grammar deals mainly
with some systems involving the Subject and Ob-
ject, what types of units fill these roles, and how

1Note that the term ‘feature’ is used distinctly from its
use in most unification paradigms. In Systemics, a feature
is what Functional Unification Grammar would call a value,
e.g., active, transitive and noun are features.

single-subject

plural-subject

nominative

accusative

singular

plural

human

nonhuman

Figure 1: A partial Systemic network

clause: Subject: nominative

Actor: human

Finite: finiteverb

Pred: lexical-verb

declarative: Subject^Finite

yes-no: Finite^Subject

transitive: Object: accusative

Actee = [ ]

Pred...Object

active: Subject/Actor

Object/Actee

Finite/Pred

passive: Subject/Actee

Object/Actor

Pass: be-aux

AgentM = "by"

Finite/Pass

Pred: en-verb

Pass^Pred

AgentM^Object

intransitive: Subject/Actor

Finite/Pred

single-subj: Subject: singular

plural-subj: Subject: plural

Figure 2: Realisation Rules



these roles conflate with two other roles: Actor and
Actee. The grammar assumes that both roles are
filled by pronouns, which are either [nominative] or
[accusative], [singular] or [plural], and [human] (e.g.,
“I”, “you”, “he”) or [nonhuman] (e.g., “it”, “that”).
Only [human] pronouns can fill the Actor role of a
clause.

The realisation operators used in the formalism
are as follows:

Insert e.g., Finite = [ ] : indicates that the func-
tion Finite must be present in the structure.

Conflate e.g., Modal/Finite: indicates that the
two functions Modal and Finite are filled by the
same grammatical unit.

Order e.g., Subject ˆ Finite: indicates the se-
quencing of functions in the surface structure. In
this example, the Subject is sequenced directly be-
fore the Finite. Any number of elements can be
sequenced in a single rule.

Partition e.g., Thing. . . Event. . . End : Another
sequence operator, specifies that the appear in this
order, but not necessarily immediately adjacent (lin-
ear precedence).

Preselect e.g., Subject: nominal-group: indicates
that the Subject element must be filled by a unit of
type nominal-group.

Lexify e.g., Deict = “the”: used to assign lexical
items directly to elements of structure. Note that
lexify overrides any preselect which may apply to
the same element of structure.

3.4 Logical Expression of the Grammar

For the purposes of the expansion of this grammar,
we re-express it in a logical formalism. Figure 3
shows Logical Form I of this grammar, including the
structural constraints embedded in the form. Note
that :xor indicates exclusive disjunction.

4 Extracting Sub-Grammars for
particular Parsing Tasks

Rather than expanding out the whole grammar, it
is more efficient to extract out subsets of the gram-
mar, to be used for particular tasks in parsing. In
our systemic parser, the description is used for three
purposes:

1. Path Unification: checking that two type-paths
can unify,

2. Predicting What Comes Next: seeing which
function-bundle(s) can come next in the struc-
ture e.g., we have just analysed Subject/Actor
ˆ Fin/Mod, and want to predict what function-
bundle can occur next in the structure.

3. Function-Bundle Assignment: seeing what
function-bundle a given constituent can fill, e.g.,
we have just parsed a nominal group, and want

(:xor

(:and clause

Subject: nominative

Actor: human

Finite: finite-verb

Pred: lexical-verb

(:xor

(:and declarative

Subject^Finite)

(:and yes-no

Finite^Subject))

(:xor

(:and transitive

Object: accusative

Actee = [ ]

Pred...Object

(:xor

(:and active

Subject/Actor

Object/Actee

Finite/Pred

(:and passive

Subject/Actee

Object/Actor

Pass: be-aux

AgentM= "by"

Pred: en-verb

Finite/Pass

Pass^Pred

AgentM^Object))

(:and intransitive

Subject/Actor

Fin/Pred))

(:xor (:and single-subject

Subject: singular))

(:and plural-subject

Subject: plural))))

(:and word

(:xor (:and pronoun

(:xor nominative

accusative)

(:xor singular

plural)

(:xor human

nonhuman))

(:and verb ... ))))

Figure 3: Logical Form I of the Grammar

to see what function-bundles it can fbe the filler
of.

Each of these uses makes only partial use of the
grammar description. Thus, rather than expand-
ing out the entire grammar, we can simplify the
process by extracting out sub-grammars, one for
each of these applications. Since the size of each
sub-grammar is smaller, the complexity problem is
reduced. This section looks at these three sub-



descriptions in more detail.

4.1 Separating Type Logic from Role

Information

It has proved useful to separate the type logic com-
ponent of the grammar from the role logic. The
two logic components have different patterns of use
– type logic is used to test whether two partial type-
paths can unify. We never try to unify a partial type
description with the type grammar as a whole. The
type-logic component of the grammar thus does not
need to be DNF-expanded.

The role logic, on the other hand, does need to
be expanded. We expand the role-logic component
to produce a set of non-disjunctive structure rules
which can be applied during parsing (sometimes
termed ‘chunking).

Thse two components of the description have dif-
ferent properties: type logic is acyclic, while role
logic is potentially cyclic. Type logic is constrained
such that types are always in disjoint coverings
(which allows efficient negation), while role logic
doesn’t have this constraint.

Because of these differences in properties and uses,
it has proved efficient to treat these two logics sep-
arately. Logical Form I of the systemic grammar
provided in Figure 3 can be re-represented in the
equivalent Logical form II shown in Figure 4, sepa-
rating out the type and role logic.

4.1.1 Unification of Type Descriptions

The parser uses the type-logic component of this
grammar without fully expanding it. Partial ex-
pansion, however, is performed, whereby the type-
path (the logical-entailment of a system, i.e., the
logical expression of types leading back to the root
of the network)2 is pre-compiled for each system.3

The negation of each type in the system is also
pre-compiled, which speeds up unification involving
negation of types.

Type-paths are represented in the form proposed
by Kasper (1987), and his unification algorithm is
used when two type-paths are unified. The main use
of the type-logic component is checking the compat-
ibility of two types or type-paths.

Type logic has thus been simplified using three
strategies:

1. Separating from Role Logic

2. Using Kasper’s ‘delayed expansion’ technique.

3. Precompiling each system’s logical entailment,
and the negation of types.

2Note that since entry conditions of systems can be log-
ically complex, the path itself can contain disjunctions and
conjunctions.

3Paths are stored with systems rather than types, since
the path of all types in a system are identical.

Because of these methods, unification of type-paths
using even quite complex grammars operates quite
quickly.

4.2 Function Assignment

Another use made of the grammatical description in
parsing is to assign a set of structural roles to a unit.
The set of roles a unit fills is called in Systemics the
function-bundle of the unit. The systemic formalism
allows each unit to be assigned multiple functions.
For instance, using the NIGEL grammar, ’the cat’
in “the cat scratched the woman” would be assigned
the function-bundle Subject/Agent/Actor/Theme.
The possibility of a unit serving multiple functions
is a major source of complexity in systemic parsing.

Assigning function-bundles to a unit is one of the
tasks in systemic parsing. For instance, assume we
have just parsed a pronoun “he”, assigning it a type-
path:

(:and word:pronoun:nominative:human:singular)

Now, we wish to find what function-bundles the pro-
noun can serve at a higher level. One result could
be:

[clause:transitive]
[pronoun] ______|___...

| => |
"he" Subject/Actor

[pronoun]

This process draws upon three parts of our gram-
mar:

• Preselection and Lexify rules: used to discover
what functions different units can fill.

• Conflation rules: used to discover which func-
tions a unit can serve simultaneously, and thus,
which of the preselection and lexify rules can
combine.

• The Type Logic: to show which of these prese-
lection, lexify and conflation rules are systemi-
cally compatible.

Since we have already set up the type-logic for
path unification, we can draw upon that resource
as needed. We do not need to include the type-logic
in the sub-description for the function-assignment
process.

4.2.1 Extracting the relevant description

For the function-assignment process, we do not need
all of the role logic description. We can select out
only those rules involving preselection, lexify, and
conflation. See Logical Form III in Figure 5.



(:and

;1. Type Logic Component

(:xor (:and clause

(:xor declarative yes-no)

(:xor (:and transitive (:xor active passive))

intransitive)

(:xor single-subject plural-subject))

(:and word

(:xor (:and pronoun (:xor nominative accusative)

(:xor singular plural)

(:xor human nonhuman))

(:and verb ... ))))

;2. Role Logic Component

(:and (:implies clause (:and Subject: nominative

Actor: human

Finite: finite-verb

Pred: lexical-verb))

(:implies declarative Subject^Finite)

(:implies yes-no Finite^Subject)

(:implies transitive (:and Object: accusative

Actee: [ ]

Pred...Object))

(:implies active (:and Subject/Actor

Object/Actee

Finite/Pred))

(:implies passive (:and Subject/Actee

Object/Actor

Pass: be-aux

AgentM= "by"

Pred: en-verb

Finite/Pass

Pass^Pred)

AgentM^Object))

(:implies intransitive (:and Subject/Actor

Fin/Pred))

(:implies single-subject Subject: singular)

(:implies plural-subject Subject: plural)))

Figure 4: Logical Form II of the Grammar

4.2.2 Implications Out

We next put this description into a form more suit-
able for DNF-expansion. Note that implication can
be re-expressed using disjunction, conjunction and
negation:

(:implies a b) is-equivalent-to

(:xor (:and a b) (:not a))

Using this rule, we can re-express the logical form
III as Logical Form IV, as shown in Figure 6.

4.2.3 Expansion to DNF

Simple algorithms exist to expand Logical Form IV
into DNF (see section 5.1). A small part of the result
appears in Logical Form V of the grammar, shown
in Figure 7.

The order of worst-case complexity of the expan-
sion to DNF is easily calculated – it is simply two
to the power of the number of disjunctions, which is
equal to the number of types which have realisation
rules of type conflation, insertion, or preselection.

By opting to expand only subsets of the whole
grammar, we have reduced the complexity of the de-
scription, since the size of n for this sub-description
is smaller than for the whole description. However,
for a real-sized grammar such as NIGEL, the size of
n is still large.

4.2.4 Re-expression in terms of Function

Bundles

From the DNF-form of this description, we can ex-
tract out partial-descriptions for each function bun-
dle. We now re-express this logical form in terms
of the type constraints on each function-bundle, in-



(:and (:implies clause

(:and Subject: nominative

Actor: human

Finite: finite-verb

Pred: lexical-verb))

(:implies transitive

Object: accusative)

(:implies active

(:and Subject/Actor

Object/Actee

Finite/Pred))

(:implies passive

(:and Subject/Actee

Object/Actor

Pass: be-aux

AgentM= "by"

Pred: en-verb

Finite/Pass))

(:implies intransitive

(:and Subject/Actor

Fin/Pred))

(:implies single-subject

Subject: singular)

(:implies plural-subject

Subject: plural)))

Figure 5: Logical Form III: The Function Assign-
ment Sub-Description

cluding both the constraint on the type of unit
the function-bundle can be part of (the ‘parent-
constraint’), and the constraint on the filler of the
function-bundle (the ‘filler-constraint’). We show
this as a set of triplets, of the form:

( <parent-types>
<function-bundle>
<child-types> )

1. ( (:and clause transitive

active single-subject)

Subject/Actor

(:and nominative human singular)))

2. ( (:and clause transitive

active single-subject)

Object/Actee

accusative)))

3. ( (:and clause transitive

active plural-subject)

Subject/Actor

(:and nominative human plural)

4. ( (:and clause transitive

active plural-subject)

Object/Actee

accusative)

(:and (:xor (:and clause

Subject: nominative

Actor: human

Finite: finite-verb

Pred: lexical-verb)

(:not clause))

(:xor (:and transitive

Object: accusative)

(:not transitive))

(:xor (:and active

Subject/Actor

Object/Actee

Finite/Pred))

(:not active))

(:xor (:and passive

Subject/Actee

Object/Actor

Pass: be-aux

AgentM: "by"

Pred: en-verb

Finite/Pass)

(:not passive))

(:xor (:and intransitive

Subject/Actor

Fin/Pred)

(:not intransitive))

(:xor (:and single-subject

Subject: singular)

(:not single-subject))

(:xor (:and plural-subject

Subject: plural)))

(:not plural-subject)))

Figure 6: Logical Form Form IV: The Function As-
signment

(:xor

(:and clause transitive active

single-subject

Subject/Actor: (:and nominative

human singular)

Object/Actee: accusative

Finite/Pred: (:and verb finite-verb

lexical-verb))

(:and clause transitive

active plural-subject

Subject/Actor: (:and nominative

human plural)

Object’Actee: accusative

Finite/Pred: (:and verb finite-verb

lexical-verb))

etc...

Figure 7: Logical Form Form V: The Function As-
signment Sub-Description in DNF



5. ( (:and clause transitive

active singular-subject

Finite/Pred

(:and verb finite-verb lexical-verb))

etc....

This representation can now be used to assign
function-bundles A unit can take on a function-
bundle if it can unify with the filler-constraint on
the function-bundle.

For the instance we started with, ”he”,
with types: (:and pronoun nominative human
singular), only one triplet would unify. We could
thus posit structure for our unit:

[clause:transitive:active:single-subject]

..__________|__________...

|

Subject/Actor

|

[ pronoun:nominative:human:singular ]

|

"he"

Note that we have also gained information about
the types of the parent-unit of which the unit is a
constituent.

4.2.5 Reducing the number of Rules

Note that there is another simplification we can
make to the triplet list. We can take all triplets
with identical function bundle and child-type spec-
ification, and join them. The parent-types slot is
replaced with the disjunction of the two parent-type
slots. Thus, elements 2 and 4 above become a single
item. This process reduces the number of rules to
apply:

2,4. ( (:and clause transitive active)
Object/Actee
accusative)))

4.3 Predicting What Comes Next

Another process we use in parsing involves the pre-
diction of what function-bundles can come next in
a partially completed structure. With a systemic
grammar, this process requires:

• Ordering and Partition rules: to see which
function can come next.

• Conflation rules: to see which functions can
conflate with the function predicted to come
next.

• The type logic: to show which of these ordering,
partition and conflation rules are systemically
compatible.

The processing of this sub-description, and any oth-
ers, is exactly the same as for function-assignment.

1. Extract from the role logic description the rele-
vant realisation rules;

2. Replace implications with disjunction and nega-
tion;

3. Expand out the grammar;

4. Index the rules in a form useful for the process-
ing.

4.4 Register Restriction

Another means of reducing the overall complexity of
the descriptions involves eliminating from the gram-
mar parts which are unlikely to be utilised in the
target texts. In systemic terms, we apply register
restrictions to the grammar.

For example, in a domain of computer manu-
als, the description of interrogative structures is not
likely to be drawn upon.4 By eliminating this sub-
description, we reduce the degree of disjunction in
the whole description, and thus speed up the parsing
of the forms which do appear in the text.

The method of deriving the register-restrictions
was as follows:

1. We parsed by hand5 a chapter of the computer
manuals we were attempting to parse, building
up a register-profile of our target texts.

2. An automatic procedure then extracted out all
the grammatical types which occur in these sen-
tences.

3. The process used this information to discover
the types not occurring in the sample.

4. The process then eliminated these types and
their realisations from the description.

We were thus left with a restricted grammar which
was capable of parsing the sentences in the sample,
and also parsing many which were not in the sample
(under the assumption that the grammatical forms
in the sample were representative of the forms found
in the manual as a whole). We reduced the size of the
grammar by approximately 60% using this method.

4.5 Summary

By extracting out sub-descriptions from the full
description, we reduce the complexity of the
description-to-be-expanded.

4Note that some of the forms we restrict through regis-
ter restriction may actually appear in any one text, although
quite rarely. We are trading off between speed for the major-
ity of sentences, and ability to parse all sentences in a text.

5The hand-parsing is really computer-assisted, – a tool
was developed to traverse the system network for each sen-
tence (and each constituent of the sentence) asking the human
which feature was appropriate for the target string. This pro-
cess guaranteed that the human-analysis conformed to the
computer grammar.



5 Improving the Efficiency of
Expansion

Section 4 has proposed techniques which reduce the
size of the description which needs to be expanded.
However, for large-sized descriptions, the expansion
is still complex. This section briefly explores two
methods which increase the efficiency of the expan-
sion process. If we can’t avoid full expansion, then
at least we can make the expansion process more
efficient.

5.1 “Structure Sharing” in Expansion

This section assumes a disjunctive description of the
following form:

(:and (:xor A B) (:xor C D) (:xor E F) )

Logical form V introduced above was of this form.
Much of the pre-processing in the parser involves the
DNF-expansion of disjunctions in this form.

5.1.1 Full Expansion

The brute force method for expanding this form in-
volves:

1. Find all combinations of terms, taking one term
from each disjunction.

2. Test compatibility of each combination, elimi-
nating combinations which are internally incon-
sistent.

Step 1 of this process produces the following DNF
form:

(:xor (:and A C E) (:and A C F)
(:and A D E) (:and A D F)
(:and B C E) (:and B C F)
(:and B D E) (:and B D F) )

The problem with this approach is with the in-
compatibility checking – the same checks will be re-
peated over and over again. For instance, the incom-
patibility check between A and C is repeated twice:
(:and A C E) and (:and A C F). This repetition oc-
curs for every pair of terms in the conjuncts. The
problem gets worse exponentially as we add more
disjuncts.

To avoid this redundancy, we need something like
a chart in parsing, a method to record the results of
each unification and thus avoid repeating any unifi-
cation.

Unfortunately, DNF expansion is not quite like
parsing. We can test the consistency between any
two pairs of terms (for instance A and C in the
above), but we also need to know about the consis-
tency of terms in combination e.g., the pairs: A&C,
A&E and C&E may be consistent, but the combina-
tion A&C&E may not be.

The rest of this section describes two techniques
which allow some redundancy reduction, sometimes
known as structure-sharing.

a
a&d

b

b&c

b&d

a&c&f
a&d&e

a&d&f
b&c&e

b&c&f
b&d&e

b&d&f

Figure 8: Tree expansion method

Figure 9: Binary expansion method

5.1.2 Tree Organisation of Expansion

The disjunctive description above can easily be re-
represented in the form below:

(:and (:and (:xor A B)
(:xor C D))

(:xor E F))

The process here involves expanding out the first
two disjunctions, eliminating inconsistent results,
and then expanding the result out with the next dis-
junction. The incremental expansion is illustrated in
Figure 8.

This method is more efficient than the full expan-
sion method, since:

• Some terms, such as a&c, a&d etc. are unified
only once. However note that terms e and f are
still involved in multiple products.

• the failure of a combination of terms early in the
unification process eliminates a large number of
expansions by the end of the process.

5.1.3 Binary Organisation of Expansion

A third approach aims at maximising the degree of
‘sharing’ unifications in the expansion. The disjunc-
tions in the description are split into pairs, and uni-
fied. The results of these unifications are then uni-
fied in the same pair-wise manner. This expansion
for a conjunction of four disjunctions is shown in
Figure 9.

The advantage of this approach is that we are
maximising the amount of structure-sharing in the
unification.



N Full Tree Binary
11 20480 4092 2364
12 45056 8188 4424
13 98304 16380 8448
14 212992 32764 16780
15 458752 65532 33236
16 983040 131068 66144
17 2097152 262140 133528
18 4456448 524284 266660
19 9437184 1048572 526956
20 19922944 2097148 1053304

Table 1: Worst-case comparison

5.1.4 Comparison of Expansion Approaches

We compared the number of unifications which take
place using each of these methods for various num-
bers of disjunctions (all disjunctions having two dis-
juncts).

One can see from Table 1 that the worst-case score
for the full expansion method is far worse than the
other methods. It is not a practical method.

Comparing the worst-case for the ‘tree’ and the
‘binary’ expansion method, we see that the binary
method clearly comes out better, by around 50%.

We also did a simulation to check an average case
score, since the worst-case score doesn’t take into ac-
count that many later unifications are avoided when
early unification proves inconsistent. We found that
while the binary method still seems superior, in some
instances the tree method requires fewer unifica-
tions. More work is needed here.

5.2 Ordering Incompatible Disjunctions
First

When using either the Tree or Binary expansion
methods, fewer unifications will be required if we
place the disjunctions with the greatest chance of
inconsistency first. In a sense, we are pruning incon-
sistent branches of the expansion tree ‘at the root’.

In the systemic parser, several heuristics have
been used to group disjunctions which are most
likely to produce the fewest cross-products, and per-
form these first.

One possible method for utilising this phe-
nomenon is:

1. Separate the disjunctions into sub-sets which
maximise likelihood of incompatibility between
rules inside the sub-expressions.

2. Expand out the disjunctions inside each sub-set.
The results of each sub-set are cached so they
need only be expanded once.

3. Expand out the results of (2) against each other.

5.3 Avoiding Expansion of Incompatible
Terms

Sometimes, it is possible to tell without full unifica-
tion that a set of rules will not unify with another
set. For instance, assume a larger grammar than the
one we have been using, a grammar which includes
clauses, nominal-groups6, prepositional phrases, ad-
verbial phrases and words. These categories are all
types in the system network, just like any other
types.

Since these types won’t unify with each other, we
can also know that types which inherit from one of
these basic types will not unify with the the sub-
types of another basic type. We thus do not need
to try to unify descriptions which differ in their ba-
sic type. If we split any disjunctive description into
sub-components for each basic type, we know a pri-
ori that there is no unification between these sub-
components.

Before trying any of the expansion techniques out-
lined in this paper, the whole grammar is segmented
into sub-descriptions, one for each of these basic
types. The complexity of the expansion of each of
these sub-grammars is less than for the grammar as
a whole.

Other principles can be used to locate sets of rules
which will not unify. These can be applied also.

6 Conclusion

While the techniques outlined here have been ap-
plied in ways particular to a systemic grammar, and
for a particular implementation, there are principles
behind the re-representations which are general to
all implementations:

1. Avoid DNF-expansion where possible, as in
Kasper’s unification algorithm.

2. Delay expansion to a later time – information
gained later may show the description to be in-
consistent in the definite component.

3. When expansion is necessary,

(a) Try to extract out sub-descriptions which
can be used, rather than expanding the en-
tire grammar.

(b) Expand out first disjunctions which are
most likely to conflict, since this will re-
duce the total number of terms which will
need to be multiplied.

(c) Avoid expanding terms that can be known
to be incompatible.

As a result of the application of these techniques
(and others not here mentioned), we have been able

6Systemics prefers the term ‘nominal-group’ over the
equivalent term ‘noun-phrase’.



to implement a parsing system which parses using a
large systemic grammar.

1. We start with the Nigel grammar, as used in the
Penman Generation System, slightly modified
for parsing purposes.

2. This grammar is then reduced by applying
register-restrictions, leaving a less complex
grammar, but a grammar which still handles
the bulk of the phenomena in the target texts.

3. Sub-descriptions of the grammar tailored for
particular processes are then extracted, and ex-
panded out as a precompile step, producing a
set of ‘chunks’ which can be used in parsing.
This expansion takes approximately 2 minutes
using Sun Common Lisp on a Sun Sparc II.

4. The ‘chunked’ grammar is then used to parse
sentences. On the above-mentioned platform,
parsing a sentence like “A user-password is a
character string consisting of a maximum of
eight alpha-numeric characters.” took 35 sec-
onds to parse7. This parser is slow, compared
to most non-systemic parsers, but is far faster
than the parser would be without the methods
outlined here.

Future work will attempt to reduce this parsing
time. Four directions are being followed:

• Streamlining the unification process.

• Moving more processing to the pre-compilation
stage.

• Reducing the complexity of the description
without reducing its coverage.

• Incorporating heuristics to resolve ambiguities
without full expansion.
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